Change search
Refine search result
45678910 301 - 350 of 28828
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 301.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    A knowledge-lite approach to word alignment2000In: Parallel Text Processing: Alignment and Use of Translation Corpora / [ed] Jean Veronis, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2000, 97-116 p.Chapter in book (Other academic)
    Abstract [en]

    The most promising approach to word alignment is to combine statistical methods with non-statistical information sources. Some of the proposed non-statistical sources, including bilingual dictionaries, POS-taggers and lemmatizers, rely on considerable linguistic knowledge, while other knowledge-lite sources such as cognate heuristics and word order heuristics can be implemented relatively easy. While knowledge-heavy sources might be expected to give better performance, knowledge-lite systems are easier to port to new language pairs and text types, and they can give sufficiently good results for many purposes, e.g. if the output is to be used by a human user for the creation of a complete word-aligned bitext. In this paper we describe the current status of the Linköping Word Aligner (LWA), which combines the use of statistical measures of co-occurrence with four knowledge-lite modules for (i)) word categorization, (ii) morphological variation, (iii) word order, and (iv) phrase recognition. We demonstrate the portability of the system (from English-Swedish texts to French-English texts) and present results for these two language-pairs. Finally, we will report observations from an error analysis of system output, and identify the major strengths and weaknesses of the system.

  • 302.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Correspondence measures for MT evaluation.2000In: Proceedings of the Second International Conference on Linguistic Resources and Evaluation (LREC-2000, Paris, France: European Language Resources Association (ELRA) , 2000, 41-46 p.Conference paper (Refereed)
  • 303.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    On translation corpora and translation support tools: A project report.1996In: Languages in Contrast. : Papers from a Symposium on Text-based Cross-linguistic Studies, Lund 4-5 March 1994 / [ed] K. Aijmer, B Altenberg & M. Johansson, Lund: Lund University Press , 1996, 185-200 p.Conference paper (Refereed)
  • 304.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Språkliga effekter av översättningssystem.1998In: Svenskan i IT-samhället. / [ed] Olle Josephsson, Uppsala: Hallgren & Fallgren , 1998, 96-115 p.Chapter in book (Other academic)
    Abstract [sv]

    Hur förändras det svenska språket av datorer och IT-teknik? Hur påverkas svenska ord, meningar och texter? Ett tiotal språkvetare diskuterar vad ordbehandlare, e-post, internet och s.k. "översättningsmaskiner" kan få för konsekvenser för svenskan. Analyser och resonemang kring en mängd exempel från både myndighetsbrev och chattare på nätet

  • 305.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Petterstedt, Michael
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Interactive Word Alignment for Language Engineering2003In: The 10th Conference of the European Chapter of the Association for Computational Linguistics, Conference Companion, Association for Computational Linguistics , 2003, 49-52 p.Conference paper (Refereed)
  • 306.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Merkel, Magnus
    Linköping University, Department of Computer and Information Science, NLPLAB - Natural Language Processing Laboratory. Linköping University, The Institute of Technology.
    Sågvall Hein, Anna
    Institutionen för lingvistik, Uppsala universitet..
    Tiedemann, Jörg
    Institutionen för lingvistik, Uppsala universitet.
    Evaluation of word alignment systems2000In: Proceedings of the Second International Conference on Linguistic Resources and Evaluation (LREC-2000), Paris, France: European Language Resources Association (ELRA) , 2000, 1255-1261 p.Conference paper (Refereed)
  • 307.
    Ahrenberg, Lars
    et al.
    Linköping University, Department of Computer and Information Science, Human-Centered systems. Linköping University, The Institute of Technology.
    Tarvi, Ljuba
    Helsingfors University, Finland.
    Natural Language Processing for the Translation Class2013In: Proceedings of the second workshop on NLP for computer-assisted language learning at NODALIDA 2013: NEALT Proceedings Series 17 / [ed] Elena Volodina, Lars Borin, Hrafn Loftsson, Linköping: Linköping University Electronic Press, 2013, 1-10 p.Conference paper (Refereed)
    Abstract [en]

    We propose a system for use in translation teaching with automatic support for alignment and comparative assessment of different translations. A primary use of this system is for discussion in class and comparison of student translations from a given source text, but it may also be used to study and compare differences between published translations. We describe the intended functions of the system and give suggestions on its design and architecture. We also discuss the degree of automation that can be expected and report results from a small indicative study focused on word alignment performance.

  • 308.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Metal Oxide Nanoparticles for Contrast Enhancement in Magnetic Resonance Imaging: Synthesis, Functionalization and Characterization2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis work focuses on the design and production of nanoparticle based contrast agents for signal enhancement in magnetic resonance imaging (MRI). Three different synthesis routes are explored, primarily to produce crystalline gadolinium oxide (Gd2O3) nanoparticles, and surface modification is done to obtain stable, dispersible, biocompatible probes inducing high proton relaxivities.

    In Paper I and II we utilized the polyol synthesis method and nanoparticle purification was performed with dialysis. Active surface functionalization was achieved by an innermost layer of 3-mercaptopropyl trimetoxy silanes (MPTS) and an outer layer of bifunctional PEG. Surface capping was shown to greatly affect the water proton relaxation to a degree which is strongly dependent on the purification time. PEGylation also induced stabilizing effects and the ability to provide the nanoparticles with luminescent properties was proven by linking the fluorescent dye Rhodamine to the bifunctional PEG.

    In Paper III the magnetic behavior of yttrium (Y) alloyed Gd2O3 nanoparticles was investigated as a function of Y concentration. This was done by performing magnetic measurements and by studying the signal line width in electron paramagnetic resonance spectroscopy for Gd2O3, Y2O3 and a series of (GdxY1-x)2O3 samples produced using the combustion synthesis. The results verified that the signal line width is dependent on the percent of yttrium dilution. This is considered as an indication of that yttrium dilution changes the electron spin relaxation time in Gd2O3.

    Paper IV and V present a novel precipitation synthesis method for Gd2O3 nanoparticles. Acetate molecular groups were found to coordinate the nanoparticle surface increasing the water dispersability. The Gd2O3 nanoparticles induce a twice as high relaxivity per gadolinium atom, as compared to the commercially available contrast agent Magnevist. Incorporation of luminescent europium (Eu3+) ions into the Gd2O3 nanoparticles in combination with surface modification with a fluorescent branched carboxyl terminated TEG, produced dual probes with tunable luminescence, maintained relaxivity and thus a bright contrast in MRI.

    In Paper VI, a new approach to accomplish a dual probe was investigated. Luminescent ZnO nanoparticles decorated with Gd ions bound in an organic matrix were evaluated for MR signal enhancement and ability to function as fluorescent probes. Interestingly, these nanoprobes did show an enhanced capability to both strengthen the MR signal and increase the fluorescent quantum yield, as compared to the pure oxides.

    In Paper VII we investigate sub 5 nm crystalline manganese based nanoparticles produced by the precipitation synthesis used for Gd2O3 nanoparticles. Manganese oxide was chosen as another candidate for MRI contrast enhancement as it is expected to have a straight forward surface coupling chemistry. Characterization of the crystal structure and chemical composition indicated nanoparticles with a MnO core and presence of manganese species of higher valences at the nanoparticle surface. The MnO nanomaterial showed a superparamagnetic behavior and less capability to increase the MR signal as compared to Gd2O3.

    Characterization of the nanoparticle crystal structure and size is, throughout the work, performed by means of transmission electron microscopy, X-ray diffraction and dynamic light scattering. The chemical composition is studied with X-ray photoelectron spectroscopy, infrared spectroscopy and near edge X-ray absorption fine structure spectroscopy and the fluorescence characteristics are evaluated with fluorescence spectroscopy. In addition, theoretical models and calculated IR spectroscopy and near edge X-ray absorption fine structure spectroscopy data have been used for evaluation of experimental results.

    To conclude, the aim of this work is the design, production and characterization of ultrasmall rare earth based nanoparticles for signal enhancement in biomedical imaging. Surface modification clearly increases the colloidal stability and biocompatibility of the nanoparticles. Compared to the agents in clinical use today, these nanoprobes have a higher capability to enhance the MR-signal, and they will in the near future be equipped with tags for specific targeting.

  • 309.
    Ahrén, Maria
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Olsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rare earth nanoparticles as contrast agent in MRI: Nanomaterial design and biofunctionalization2007In: IVC-17/ICSS-13 ICNT,2007, 2007Conference paper (Other academic)
  • 310.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, 5753-5762 p.Article in journal (Refereed)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 311.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Kauczor, Joanna
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study2012In: Journal of nanoparticle research, ISSN 1388-0764, E-ISSN 1572-896X, Vol. 14, no 8Article in journal (Refereed)
    Abstract [en]

    Chelated gadolinium ions, e. g., GdDTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4-5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r(1) and r(2) values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.

  • 312.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Nanostructured Materials. Linköping University, The Institute of Technology.
    Linares, Mathieu
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Nordblad, Per
    Division of Solid State Physics, Department of Engineering Sciences, Uppsala University, Uppsala, Sweden.
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    One-step synthesis of sub 5 nm sized manganese oxide based nanoparticles2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Sub 5 nm sized manganese oxide nanoparticles; MnOx (1 ≤ x ≤ 2), were synthesized via a short time room temperature synthesis route. The nanoparticles are crystalline, spherically shaped and in the size range of 2-4 nm as shown by transmission electron microscopy studies. Selected area electron diffraction patterns were collected and their appearance indicated that the nanoparticle cores are composed of MnO. Also, co-existence of the (II) and (III) oxidation states at the nanoparticle surface was verified by results achieved from infrared spectroscopy and X-ray photoelectron spectroscopy. These measurements also supported presence of a minor amount of acetate groups as well as a negligible fraction of carbonate groups at the nanoparticle surfaces. The interpretation of the IR spectra was confirmed by quantum chemical calculations using the high spin manganese nanoparticle Mn12O12(OAc)16(H2O)4, as a model system for the MnOx nanoparticle surface. Bulk MnO and Mn2O3 are known to be antiferromagnetic. The magnetic properties are however somewhat dependent of the crystallite size and changes when scaling down to the nanoregion. The MnOx (1 ≤ x ≤ 2) nanoparticles investigated in this work show a superparamagnetic behavior with a blocking temperature of approximately 12 K proven by means of SQUID measurements. The relaxivities of the nanoparticles and the Mn(OAc)2 precursors were studied with a bench top NMR analyzer verifying nanoparticle r1 and r2 of 0.5 and 6 mMs-1 respectively. The r1 relaxivity is lower than what is earlier reported for Gd based contrast agent, but improvements are expected by further surface modification, due to increased rotational time and higher water dispersability.

  • 313.
    Ahsan, Naveed
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Programmable and Tunable Circuits for Flexible RF Front Ends2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Most of today’s microwave circuits are designed for specific function and specialneed. There is a growing trend to have flexible and reconfigurable circuits. Circuitsthat can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured toachieve the desired performance seems to be challenging. However, with recentadvances in many areas of technology these demands can now be met.

    Two concepts have been investigated in this thesis. The initial part presents thefeasibility of a flexible and programmable circuit (PROMFA) that can be utilized formultifunctional systems operating at microwave frequencies. Design details andPROMFA implementation is presented. This concept is based on an array of genericcells, which consists of a matrix of analog building blocks that can be dynamicallyreconfigured. Either each matrix element can be programmed independently or severalelements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters oroscillators. Realization of a flexible RF circuit based on generic cells is a new concept.In order to validate the idea, a test chip has been fabricated in a 0.2μm GaAs process, ED02AH from OMMICTM. Simulated and measured results are presented along withsome key applications like implementation of a widely tunable band pass filter and anactive corporate feed network.

    The later part of the thesis covers the design and implementation of tunable andwideband highly linear LNAs that can be very useful for multistandard terminals suchas software defined radio (SDR). One of the key components in the design of a flexibleradio is low noise amplifier (LNA). Considering a multimode and multiband radiofront end, the LNA must provide adequate performance within a large frequency band.Optimization of LNA performance for a single frequency band is not suitable for thisapplication. There are two possible solutions for multiband and multimode radio frontends (a) Narrowband tunable LNAs (b) Wideband highly linear LNAs. A dual bandtunable LNA MMIC has been fabricated in 0.2μm GaAs process. A self tuningtechnique has also been proposed for the optimization of this LNA. This thesis alsopresents the design of a novel highly linear current mode LNA that can be used forwideband RF front ends for multistandard applications. Technology process for thiscircuit is 90nm CMOS.

  • 314.
    Ahsan, Naveed
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Reconfigurable and Broadband Circuits for Flexible RF Front Ends2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Most of today’s microwave circuits are designed for specific function and special need. There is a growing trend to have flexible and reconfigurable circuits. Circuits that can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured to achieve the desired performance seems to be challenging. However, with recent advances in many areas of technology these demands can now be met.

    Two concepts have been investigated in this thesis. The initial part presents the feasibility of a flexible and programmable circuit (PROMFA) that can be utilized for multifunctional systems operating at microwave frequencies. Design details and PROMFA implementation is presented. This concept is based on an array of generic cells, which consists of a matrix of analog building blocks that can be dynamically reconfigured. Either each matrix element can be programmed independently or several elements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters or oscillators. Realization of a flexible RF circuit based on generic cells is a new concept. In order to validate the idea, two test chips have been fabricated. The first chip implementation was carried out in a 0.2μm GaAs process, ED02AH from OMMICTM. The second chip was implemented in a standard 90nm CMOS process. Simulated and measured results are presented along with some key applications such as low noise amplifier, tunable band pass filter and a tunable oscillator.

    The later part of the thesis covers the design and implementation of broadband RF front-ends that can be utilized for multistandard terminals such as software defined radio (SDR). The concept of low gain, highly linear frontends has been presented. For proof of concept two test chips have been implemented in 90nm CMOS technology process. Simulated and measurement results are presented. These RF front-end implementations utilize wideband designs with active and passive mixer configurations.

    We have also investigated narrowband tunable LNAs. A dual band tunable LNA MMIC has been fabricated in 0.2μm GaAs process. A self tuning technique has been proposed for the optimization of this LNA.

  • 315.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Dabrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Ouacha, Aziz
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    A Self-Tuning Technique for Optimization of Dual Band LNA2008In: European Wireless Technology Conference (EuWiT), EuMW 2008, October 27-28, 2008, Amsterdam, The Netherlands, IEEE , 2008, 178-181 p.Conference paper (Refereed)
    Abstract [en]

    This paper presents a self-tuning technique for optimization of a dual band LNAthat can be used in a flexible RF front-end suitable for IEEE 802.11a/b/g WLANapplications. With this tuning technique the LNA can perform self-calibrationfor the optimal performance. A possible shift in resonance frequency due toprocess and temperature variations can be compensated by this method. Theproposed self-tuning technique is implemented by using a simple RF detector atthe LNA output. Based on the DC value provided by this detector the LNA istuned for a maximum gain through the tuning loop, which incorporates ADC,digital base-band and DAC. We show that the tuning error can be within halfLSB of ADC provided the DAC and ADC resolutions are constraint by aspecified condition. For 4-bit case this value corresponds to a gain error of0.4 dB. The LNA has been implemented in 0.2μm GaAs process offered byOMMICTM. In measurements the LNA achieves a gain of 15.1 dB and 21.6 dBin the upper and lower band, respectively, with corresponding NF of 3.8 dB and2.8 dB. In the lower band the measured IIP3 is -3 dBm and 1dB_CP is -8 dBm.

  • 316.
    Ahsan, Naveed
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Electronic Devices.
    Ouacha, Aziz
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Electronic Devices.
    Dabrowski, Jerzy
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Electronic Devices.
    A tunable LNA for flexible RF front-end.2006In: Swedish system-on-chip conference.,2006, Lund: Lunds universitet , 2006Conference paper (Refereed)
  • 317.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Ouacha, Aziz
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Dabrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Samuelsson, Carl
    Swedish Defence Research Agency (FOI), P.O. Box 1165, SE-581 11 Linköping, Sweden.
    Dual Band Tunable LNA for Flexible RF Front End2007In: Proceedings of the IEEE International Bhurban Conference on Applied Sciences & Technology (IBCAST 2007), January 8-11, 2007, Islamabad, Pakistan, IEEE Explore , 2007, 19-22 p.Conference paper (Refereed)
    Abstract [en]

    This paper presents a dual band LNA that can be switched between two bands (2.4 GHz & 5.2 GHz) for IEEE 802.1 la/b/g WLAN applications. The LNA is also tunable within each band and the tuning is incorporated by on-chip varactors. The test chip consists of two fully integrated narrow-band tunable LNAs along with SPDT switch. For power saving one LNA can be switched off. The technology process is 0.2 mum GaAs offered by OMMIC. The LNA can achieve a relatively good performance over the two bands as demonstrated by simulation. With a 3V supply, the LNA has a gain of 26.2 dB at 2.4 GHz and 21.8 dB at 5.2 GHz and the corresponding NF varies between 2.07 dB and 1.84 dB, respectively. The LNA has an IIP3 of -7 dBm at 2.4 GHz and -1.6 dBm at 5.2 GHz.

  • 318.
    Ahsan, Naveed
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Electronic Devices.
    Ouacha, Aziz
    Linköping University, The Institute of Technology. Linköping University, Department of Electrical Engineering, Electronic Devices.
    Samuelsson, Carl
    FOI, Linköping.
    Boman, Tomas
    FOI, Linköping.
    A widely tunable filter using generic PROMFA cells.2007In: Swedish System-on-Chip Conference SSoCC,2007, Göteborg: CTH , 2007Conference paper (Refereed)
  • 319.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Ouacha, Aziz
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Samuelsson, Carl
    Swedish Defence Research Agency (FOI), P.O. Box 1165, SE-581 11 Linköping, Sweden.
    Boman, Tomas
    Swedish Defence Research Agency (FOI), P.O. Box 1165, SE-581 11 Linköping, Sweden.
    Applications of Programmable Microwave Function Array (PROMFA)2007In: Proceedings of the IEEE European Conference on Circuit Theory and Design (ECCTD 2007), August 26-30, 2007, Seville, Spain, IEEE , 2007, 164 -167 p.Conference paper (Refereed)
    Abstract [en]

    This paper describes the use of programmable microwave function array (PROMFA) for different microwave application. The PROMFA concept is based on an array of generic cells, in which a number of different functions can be realized. Each PROMFA cell is a four-port circuit, that can either be programmed independently or collectively according to a specific need. Specifically, the phase shift capability in a single PROMFA cell, useful for a new type of phase shifter design is discussed. The paper also presents the functionality of this new architecture as a beamforming network. As an example case an active corporate feed network and a tunable recursive filter is demonstrated. Simulated and measured results are presented.

  • 320.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering. Linköping University, The Institute of Technology.
    Ouacha, Aziz
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Svensson, Christer
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Samuelsson, Carl
    Swedish Defence Research Agency (FOI), P.O. Box 1165, SE-581 11 Linköping, Sweden.
    Dąbrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    A Design Approach for Flexible RF Circuits Using Reconfigurable PROMFA Cells2009In: Analog Integrated Circuits and Signal Processing, ISSN 0925-1030, E-ISSN 1573-1979Article in journal (Other academic)
    Abstract [en]

    This paper presents a design approach for flexible RF circuits using Programmable Microwave Function Array (PROMFA) cells. The concept is based on an array of generic cells that can be dynamically reconfigured. Therefore, the same circuit can be used for various functions e.g. amplifier, tunable filter and tunable oscillator. For proof of concept a test chip has been implemented in 90nm CMOS process. The chip measurement results indicate that a single unit cell amplifier has a typical gain of 4dB with noise figure of 2.65dB at 1.5GHz. The measured input referred 1dB compression point is -8dBm with an IIP3 of +1.1dBm at 1GHz. In a single unit cell oscillator configuration, the oscillator can achieve a wide tuning range of 600MHz to 1.8GHz. The measured phase noise is -94dBc/Hz at an offset frequency of 1MHz for the oscillation frequency of 1.2GHz. A single unit cell oscillator consumes 18mW at 1.2GHz while providing -8dBm power into 50Ω load. In a single unit cell filter configuration, the tunable band pass filter can achieve a reasonable tuning range of 600MHz to 1.2GHz with a typical power consumption of 13mW at 1GHz. A single unit cell has a total chip area of 0.091mm2 including the coupling capacitors.

  • 321.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Svensson, Christer
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Dabrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Highly Linear Wideband Low Power Current Mode LNA2008In: Proceedings from the ICSES'08 - ICSES 2008 International Conference on Signals and Electronic Systems, IEEE , 2008, 73-76 p.Conference paper (Refereed)
    Abstract [en]

    This paper presents design considerations for low power, highly linear currentmode LNAs that can be used for wideband RF front-ends for multistandardapplications. The circuit level simulations of the proposed architecture indicatethat with optimal biasing a high value of IIP3 can be obtained. A comparison ofthree scenarios for optimal bias is presented. Simulation results indicate thatwith the proposed architecture, LNAs may achieve a maximum NF of 3.6 dBwith a 3 dB bandwidth larger than 10 GHz and a best case IIP3 of +17.6 dBmwith 6.3 mW power consumption. The LNAs have a broadband input match of 50Ω. The process is 90nm CMOS and with 1.1V supply the LNAs powerconsumption varies between 6.3 mW and 2.3 mW for the best and the worst caseIIP3, respectively.

  • 322.
    Ahsan, Naveed
    et al.
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Svensson, Christer
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Ramzan, Rashad
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Dąbrowski, Jerzy
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Ouacha, Aziz
    Linköping University, Department of Electrical Engineering, Electronic Devices. Linköping University, The Institute of Technology.
    Samuelsson, Carl
    Swedish Defence Research Agency (FOI), P.O. Box 1165, SE-581 11 Linköping, Sweden.
    A 1.1V 6.2mW, Highly Linear Wideband RF Front-end for Multi-Standard Receivers in 90nm CMOS2012In: Analog Integrated Circuits and Signal Processing, ISSN 0925-1030, E-ISSN 1573-1979, Vol. 70, no 1, 79-90 p.Article in journal (Refereed)
    Abstract [en]

    This paper presents the design and implementation of a low power, highly linear, wideband RF front-end in 90nm CMOS. The architecture consists of an inverter-like common gate low noise amplifier followed by a passive ring mixer. The proposed architecture achieves high linearity in a wide band (0.5-6GHz) at very low power. Therefore, it is a suitable choice for software defined radio (SDR) receivers. The chip measurement results indicate that the inverter-like common gate input stage has a broadband input match achieving S11 below -8.8dB up to 6GHz. The measured single sideband noise figure at an LO frequency of 2GHz and an IF of 10MHz is 6.25dB. The front-end achieves a voltage conversion gain of 4.5dB at 1GHz with 3dB bandwidth of more than 6GHz. The measured input referred 1dB compression point is +1.5dBm while the IIP3 is +11.73dBm and the IIP2 is +26.23dBm respectively at an LO frequency of 2GHz. The RF front-end consumes 6.2mW from a 1.1V supply with an active chip area of 0.0856mm2.

  • 323.
    Ahualli, S.
    et al.
    Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
    Delgado, A.
    Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Granada, Granada, Spain.
    Miklavcic, Stan
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    White, L.R.
    Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA.
    Dynamic electrophoretic mobility of concentrated dispersions of spherical colloidal particles. On the consistent use of the cell model2006In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 22, no 16, 7041-7051 p.Article in journal (Refereed)
    Abstract [en]

    This paper outlines a complete and self-consistent cell model theory of the electrokinetics of dense spherical colloidal suspensions for general electrolyte composition, frequency of applied field, ? potential, and particle size. The standard electrokinetic equations, first introduced for any given particle configuration, are made tractable to computation by averaging over particle configurations. The focus of this paper is on the systematic development of suitable boundary conditions at the outer cell boundary obtained from global constraints on the suspension. The approach is discussed in relation to previously published boundary conditions that have often been introduced in an ad hoc manner. Results of a robust numerical calculation of high-frequency colloidal transport properties, such as dynamic mobility, using the present model are presented and compared with some existing dense suspension models. © 2006 American Chemical Society.

  • 324.
    Ahualli, S.
    et al.
    Department of Applied Physics, University of Granada, 18071 Granada, Spain.
    Delgado, A.V.
    Department of Applied Physics, University of Granada, 18071 Granada, Spain.
    Miklavcic, Stan
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    White, L.R.
    Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States.
    Use of a cell model for the evaluation of the dynamic mobility of spherical silica suspensions2007In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 309, no 2, 342-349 p.Article in journal (Refereed)
    Abstract [en]

    In this paper we evaluate the validity of a cell model for the calculation of the dynamic mobility of concentrated suspensions of spheres. The key point is the consideration of the boundary conditions (electrical and hydrodynamic) at the boundary of the fluid cell surrounding a single probe particle. The model proposed is based on a universal criterion for the averages of fluid velocity, electric potential, pressure field or electrochemical properties in the cell. The calculations are checked against a wide set of experimental data on the dynamic mobility of silica suspensions with two different radii, several ionic strengths, and two particle concentrations. The comparison reveals an excellent agreement between theory and experiment, and the model appears to be extremely suitable for correctly predicting the behavior of the dynamic mobility, including the changes in the zeta potential, ?, with ionic strength, the frequency and amplitude of the Maxwell-Wagner-O'Konski relaxation, and the inertial relaxation occurring at the top of the frequency range accessible to our experimental device. © 2007 Elsevier Inc. All rights reserved.

  • 325.
    Ahuja, R.
    et al.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden.
    Arwin, Hans
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Optics .
    Da, Silva A.F.
    Da Silva, A.F., Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40 210 340 Salvadoor, Ba, Brazil.
    Persson, C.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden.
    Osorio-Guillen, J.M.
    Osorio-Guillén, J.M., Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden.
    Souza, De Almeida J.
    Souza De Almeida, J., Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden.
    Araujo, C.M.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40 210 340 Salvadoor, Ba, Brazil.
    Veje, E.
    Dept. of Electronic Power Eng., Technical University of Denmark, Building 325, DK-2800 Lyngby, Denmark.
    Veissid, N.
    Instituto Nac. de Pesq. Espaciais, LAS, C.P 515, 12 201 970 Sao Jose dos Campos, SP, Brazil.
    An, C.Y.
    Instituto Nac. de Pesq. Espaciais, LAS, C.P 515, 12 201 970 Sao Jose dos Campos, SP, Brazil.
    Pepe, I.
    Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40 210 340 Salvadoor, Ba, Brazil, LPCC, College de France, F-75231, Paris, France.
    Johansson, B.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, SE-751 21 Uppsala, Sweden.
    Electronic and optical properties of lead iodide2002In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 92, no 12, 7219-7224 p.Article in journal (Refereed)
    Abstract [en]

    Electronic and optical properties of lead iodide were studied experimentally using absorption, transmission, ellipsometry, and theoretically using a full-potential linear muffin-tin-orbital method. The samples were mounted in a closed-cycle helium refrigeration system and studied at temperatures between 10 and 300 K. Band-gap energy of lead iodide was measured as a function of temperature using optical absorption. Calculations showed that there was a small anisotropy in optical properties of lead iodide, and dielectric function calculations agreed well with experiments.

  • 326.
    Ahuja, R.
    et al.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, P.O. Box 530, SE-751 21 Uppsala, Sweden.
    Ferreira, Da Silva A.
    Ferreira Da Silva, A., Instituto de Física, Universidade Federal da Bahia, Campus Universitario de Ondina, 40 210 340 Salvador, Ba, Brazil.
    Persson, C.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, P.O. Box 530, SE-751 21 Uppsala, Sweden.
    Osorio-Guillen, J.M.
    Osorio-Guillén, J.M., Condensed Matter Theory Group, Department of Physics, Uppsala University, P.O. Box 530, SE-751 21 Uppsala, Sweden.
    Pepe, I.
    Instituto de Física, Universidade Federal da Bahia, Campus Universitario de Ondina, 40 210 340 Salvador, Ba, Brazil.
    Järrendahl, Kenneth
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Lindquist, O.P.A.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Edwards, N.V.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Wahab, Qamar Ul
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Materials Science .
    Johansson, B.
    Condensed Matter Theory Group, Department of Physics, Uppsala University, P.O. Box 530, SE-751 21 Uppsala, Sweden.
    Optical properties of 4H-SiC2002In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 91, no 3, 2099-2103 p.Article in journal (Refereed)
    Abstract [en]

    The optical band gap energy and the dielectric functions of n-type 4H-SiC have been investigated experimentally by transmission spectroscopy and spectroscopic ellipsometry and theoretically by an ab initio full-potential linear muffin-tin-orbital method. We present the real and imaginary parts of the dielectric functions, resolved into the transverse and longitudinal photon moment a, and we show that the anisotropy is small in 4H-SiC. The measurements and the calculations fall closely together in a wide range of energies. © 2002 American Institute of Physics.

  • 327.
    Aiboushev, A. V.
    et al.
    Institute of Chemical Physics, RAS.
    Astafiev, A. A.
    Institute of Chemical Physics, RAS.
    Lozovik, Yu E.
    Institute of Spectroscopy, RAS.
    Merkulova, S. P.
    Institute of Spectroscopy, RAS.
    Nadtochenko, V. A.
    Institute of Chemical Physics, RAS.
    Sarkisov, O. M.
    Institute of Chemical Physics, RAS.
    Willander, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Science and Technology.
    Enhanced luminescence and two-photon absorption of silver nano-clusters2009In: Physica Status Solidi c, Vol. 6, no 0, S162-S166 p.Article in journal (Refereed)
    Abstract [en]

    Luminescence of silver nanoparticles photo-deposited on titan dioxide nanoparticles of mesoporous film is studied. Luminescence was registered under the two-photon excitation by femto-second laser pulses of Ti:sapphire laser. It was observed that Ag/ TiO2 mesoporous films have high concentration of bright luminescence spots which reveal stability to degradation under long illumination. Various configurations of silver nanoparticles are analyzed to explain the physics of bright luminescence spots ( hot spots). Luminescence intensity reveals hot spots dependence on the polarization of excitation laser pulse. Properties of Ag/TiO2 system can be useful for single molecule spectroscopy and visualization of biological objects. Aapplication of Ag/ TiO2 mesoporous films for Raman scattering spectroscopy de-menstruated for the case of Rhodamine B.

  • 328.
    Aichhorn, Markus
    et al.
    Graz University of Technology.
    Pourovskii, Leonid
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics . Linköping University, The Institute of Technology.
    Georges, Antoine
    Ecole Polytech.
    Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 5, 054529- p.Article in journal (Refereed)
    Abstract [en]

    We present calculations of structural and magnetic properties of the iron-pnictide superconductor LaFeAsO including electron-electron correlations. For this purpose we apply a fully charge self-consistent combination of density-functional theory with the dynamical mean-field theory, allowing for the calculation of total energies. We find that the inclusion of correlation effects gives a good agreement of the arsenic z position with experimental data even in the paramagnetic (high-temperature) phase. Going to low temperatures, we study the formation of the ordered moment in the striped spin-density-wave phase, yielding an ordered moment of about 0.60 mu(B), again in good agreement with experiments. This shows that the inclusion of correlation effects improves both structural and magnetic properties of LaFeAsO at the same time.

  • 329.
    Aid, Graham
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Environmental Technology and Management. Ragn-sells, Sweden.
    Kihl, Anders
    Ragn Sells AB.
    Driving forces and inhibitors of secondary stock extraction2014Conference paper (Other academic)
    Abstract [en]

    Even though it’s well known to mankind that our common resources are limited and that recycling is a key for a sustainable future; in reality we see few examples of true recycling where virgin raw material is substituted by waste. There are endless number of examples where waste is utilized to some extent without solving the core issue: reducing the need of extracting virgin raw materials. This article analyses some of the driving forces and inhibitors that explains why it’s so difficult establish secondary stock extraction although technology is available. The authors discuss and suggest possible ways for reducing the some of the main barriers.

  • 330.
    Aidas, Kestutis
    et al.
    Vilnius University, Lithuania .
    Angeli, Celestino
    University of Ferrara, Italy .
    Bak, Keld L.
    University of Aarhus, Denmark .
    Bakken, Vebjorn
    University of Oslo, Norway .
    Bast, Radovan
    KTH Royal Institute Technology, Sweden .
    Boman, Linus
    EMGS ASA, Norway .
    Christiansen, Ove
    University of Aarhus, Denmark .
    Cimiraglia, Renzo
    University of Ferrara, Italy .
    Coriani, Sonia
    University of Trieste, Italy .
    Dahle, Pal
    Norwegian Comp Centre, Norway .
    Dalskov, Erik K.
    Systematic, Denmark .
    Ekstrom, Ulf
    University of Oslo, Norway .
    Enevoldsen, Thomas
    University of So Denmark, Denmark .
    Eriksen, Janus J.
    University of Aarhus, Denmark .
    Ettenhuber, Patrick
    University of Aarhus, Denmark .
    Fernandez, Berta
    University of Santiago de Compostela, Spain University of Santiago de Compostela, Spain .
    Ferrighi, Lara
    UiT Arctic University of Norway, Norway .
    Fliegl, Heike
    University of Oslo, Norway .
    Frediani, Luca
    UiT Arctic University of Norway, Norway .
    Hald, Kasper
    Danske Bank, Denmark .
    Halkier, Asger
    CSC Scandihealth, Denmark .
    Hattig, Christof
    Ruhr University of Bochum, Germany .
    Heiberg, Hanne
    Norwegian Meteorol Institute, Norway .
    Helgaker, Trygve
    University of Oslo, Norway .
    Christian Hennum, Alf
    Norwegian Def Research Estab, Norway .
    Hettema, Hinne
    University of Auckland, New Zealand .
    Hjertenaes, Eirik
    Norwegian University of Science and Technology, Norway .
    Host, Stinne
    University of Aarhus, Denmark .
    Hoyvik, Ida-Marie
    University of Aarhus, Denmark .
    Francesca Iozzi, Maria
    University of Oslo, Norway .
    Jansik, Branislav
    Technical University of Ostrava, Czech Republic .
    Jorgen Aa. Jensen, Hans
    University of So Denmark, Denmark .
    Jonsson, Dan
    UiT Arctic University of Norway, Norway .
    Jorgensen, Poul
    University of Aarhus, Denmark .
    Kauczor, Joanna
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Kirpekar, Sheela
    KVUC, Denmark .
    Kjrgaard, Thomas
    University of Aarhus, Denmark .
    Klopper, Wim
    Karlsruhe Institute Technology, Germany .
    Knecht, Stefan
    Swiss Federal Institute Technology, Switzerland .
    Kobayashi, Rika
    Australian National University, Australia .
    Koch, Henrik
    Norwegian University of Science and Technology, Norway .
    Kongsted, Jacob
    University of So Denmark, Denmark .
    Krapp, Andreas
    Jotun AS, Norway .
    Kristensen, Kasper
    University of Aarhus, Denmark .
    Ligabue, Andrea
    University of Modena and Reggio Emilia, Italy .
    B. Lutnaes, Ola
    Cisco Syst, Norway .
    I. Melo, Juan
    University of Buenos Aires, Argentina University of Buenos Aires, Argentina .
    V. Mikkelsen, Kurt
    University of Copenhagen, Denmark .
    H. Myhre, Rolf
    Norwegian University of Science and Technology, Norway .
    Neiss, Christian
    University of Erlangen Nurnberg, Germany .
    B. Nielsen, Christian
    Sun Chemistry, Denmark .
    Norman, Patrick
    Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
    Olsen, Jeppe
    University of Aarhus, Denmark University of So Denmark, Denmark .
    Magnus H. Olsen, Jogvan
    University of Aarhus, Denmark University of So Denmark, Denmark .
    Osted, Anders
    Koge Gymnasium, Denmark .
    J. Packer, Martin
    University of So Denmark, Denmark .
    Pawlowski, Filip
    Kazimierz Wielki University, Poland .
    B. Pedersen, Thomas
    University of Oslo, Norway .
    F. Provasi, Patricio
    Northeastern University, Argentina IMIT CONICET, Argentina .
    Reine, Simen
    University of Oslo, Norway .
    Rinkevicius, Zilvinas
    KTH Royal Institute Technology, Sweden KTH Royal Institute Technology, Sweden .
    A. Ruden, Torgeir
    Kjeller Software Commun, Norway .
    Ruud, Kenneth
    UiT Arctic University of Norway, Norway .
    V. Rybkin, Vladimir
    Karlsruhe Institute Technology, Germany .
    Salek, Pawel
    PSS9 Dev, Poland .
    C. M. Samson, Claire
    Karlsruhe Institute Technology, Germany .
    Sanchez de Meras, Alfredo
    University of Valencia, Spain .
    Saue, Trond
    University of Toulouse 3, France .
    P. A. Sauer, Stephan
    University of Copenhagen, Denmark .
    Schimmelpfennig, Bernd
    Karlsruhe Institute Technology, Germany .
    Sneskov, Kristian
    Danske Bank, Denmark .
    H. Steindal, Arnfinn
    UiT Arctic University of Norway, Norway .
    O. Sylvester-Hvid, Kristian
    Danish Technology Institute Nano and Microtechnol Prod, Denmark .
    R. Taylor, Peter
    University of Melbourne, Australia University of Melbourne, Australia .
    M. Teale, Andrew
    University of Nottingham, England .
    I. Tellgren, Erik
    University of Oslo, Norway .
    P. Tew, David
    University of Bristol, England .
    J. Thorvaldsen, Andreas
    University of Aarhus, Denmark .
    Thogersen, Lea
    CLC bio, Denmark .
    Vahtras, Olav
    KTH Royal Institute Technology, Sweden .
    A. Watson, Mark
    Princeton University, NJ 08544 USA .
    J. D. Wilson, David
    La Trobe University, Australia La Trobe University, Australia .
    Ziolkowski, Marcin
    Clemson University, SC USA .
    Agren, Hans
    KTH Royal Institute Technology, Sweden .
    The Dalton quantum chemistry program system2014In: WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, ISSN 1759-0876, Vol. 4, no 3, 269-284 p.Article in journal (Refereed)
    Abstract [en]

    Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, MOller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from for a number of UNIX platforms.

  • 331.
    Aiempanakit, Montri
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Reactive High Power Impulse Magnetron Sputtering of Metal Oxides2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work presented in this thesis deals with reactive magnetron sputtering processes of metal oxides with a prime focus on high power impulse magnetron sputtering (HiPIMS). The aim of the research is to contribute towards understanding of the fundamental mechanisms governing a reactive HiPIMS process and to investigate their implications on the film growth.

    The stabilization of the HiPIMS process at the transition zone between the metal and compound modes of Al-O and Ce-O was investigated for realizing the film deposition with improved properties and higher depositionrate and the results are compared with direct current magnetron sputtering (DCMS) processes. The investigations were made for different sputtering conditions obtained by varying pulse frequency, peak power and pumping speed. For the experimental conditions employed, it was found that reactive HiPIMS can eliminate/suppress the hysteresis effect for a range of frequency, leading to a stable deposition process with a high deposition rate. The hysteresis was found to be eliminated for Al-O while for Ce-O, it was not eliminated but suppressed as compared to the DCMS. The behavior of elimination/suppression of the hysteresis may be influenced by high erosion rate during the pulse, limited target oxidation between the pulses and gas rarefaction effects in front of the target. Similar investigations were made for Ti-O employing a larger target and the hysteresis was found to be suppressed as compared to the respective DCMS, but not eliminated. It was shown that the effect of gas rarefaction is a powerful mechanism for preventing oxide formation upon the target surface. The impact of this effect depends on the off-time between the pulses. Longer off-times reduce the influence of gas rarefaction.

    To gain a better understanding of the discharge current-voltage behavior in a reactive HiPIMS process of metal oxides, the ion compositions and ion energy distributions were measured for Al-O and Ti-O using time averaged and time-resolved mass spectrometry. It was shown that the different discharge current behavior between non-reactive and reactive modes couldn’t be explained solely by the change in the secondary electron emission yield from the sputtering target. The high fluxes of O1+ ions contribute substantially to the discharge current giving rise to an increase in the discharge current in the oxide mode as compared to the metal mode. The results also show that the source of oxygen in the discharge is both, the target surface (via sputtering) as well as the gas phase.

    The investigations on the properties of HiPIMS grown films were made by synthesizing metal oxide thin films using Al-O, Ti-O and Ag-Cu-O. It was shown that Al2O3 films grown under optimum condition using reactive HiPIMS exhibit superior properties as compared to DCMS. The HiPIMS grown films exhibit higher refractive index as well as the deposition rate of the film growth was higher under the same operating conditions. The effect of HiPIMS peak power on TiO2 film properties was investigated and the results are compared with the DCMS. The properties of TiO2 films such as refractive index, film density and phase structure were experimentally determined. The ion composition during film growth was investigated and an explanation on the correlation of the film properties and ion energy was made. It was found that energetic and ionized sputtered flux in reactive HiPIMS can be used to tailor the phase formation of the TiO2 films with high peak powers facilitating the rutile phase while the anatase phase can be obtained using low peak powers. These phases can be obtained at room temperature without external substrate heating or post-deposition annealing which is in contrast to the reactive DCMS where both, anatase and rutile phases of TiO2 are obtained at either elevated growth temperatures or by employing post deposition annealing. The effect of HiPIMS peak power on the crystal structure of the grown films was also investigated for ternary compound, Ag-Cu-O, for which films were synthesized using reactive HiPIMS as well as reactive DCMS. It was found that the stoichiometric Ag2Cu2O3 can be synthesized by all examined pulsing peak powers. The oxygen gas flow rate required to form stoichiometric films is proportional to the pulsing peak power in HiPIMS. DCMS required low oxygen gas flow to synthesis the stoichiometric films. The HiPIMS grown films exhibit more pronounced crystalline structure as compared to the films grown using DCMS. This is likely an effect of highly ionized depositing flux which facilitates an intense ion bombardment during the film growth using HiPIMS. Our results indicate that Ag2Cu2O3film formation is very sensitive to the ion bombardment on the substrate as well as to the backattraction of metal and oxygen ions to the target.

  • 332.
    Aiempanakit, Montri
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Aijaz, Asim
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Kubart, Tomas
    The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Understanding the discharge current behavior in reactive high power impulse magnetron sputtering of oxides2013In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 113, no 13Article in journal (Refereed)
    Abstract [en]

    The discharge current behavior in reactive high power impulse magnetron sputtering (HiPIMS) of Ti-O and Al-O is investigated. It is found that for both metals, the discharge peak current significantly increases in the oxide mode in contrast to the behavior in reactive direct current magnetron sputtering where the discharge current increases for Al but decreases for Ti when oxygen is introduced. In order to investigate the increase in the discharge current in HiPIMS-mode, the ionic contribution of the discharge in the oxide and metal mode is measured using time-resolved mass spectrometry. The energy distributions and time evolution are investigated during the pulse-on time as well as in the post-discharge. In the oxide mode, the discharge is dominated by ionized oxygen, which has been preferentially sputtered from the target surface. The ionized oxygen determines the discharge behavior in reactive HiPIMS.

  • 333.
    Aiempanakit, Montri
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Aijaz, Asim
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Larsson, Petter
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Magnusson, Roger
    Linköping University, Department of Physics, Chemistry and Biology, Applied Optics . Linköping University, Faculty of Science & Engineering.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Kubart, Tomas
    Uppsala University.
    Effect of peak power in reactive high power impulse magnetron sputtering of titanium dioxide2011In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 205, no 20, 4828-4831 p.Article in journal (Refereed)
    Abstract [en]

    The effect of peak power in a high power impulse magnetron sputtering (HiPIMS) reactive deposition of TiO(2) films has been studied with respect to the deposition rate and coating properties. With increasing peak power not only the ionization of the sputtered material increases but also their energy. In order to correlate the variation in the ion energy distributions with the film properties, the phase composition, density and optical properties of the films grown with different HiPIMS-parameters have been investigated and compared to a film grown using direct current magnetron sputtering (DCMS). All experiments were performed for constant average power and pulse on time (100W and 35 mu s, respectively), different peak powers were achieved by varying the frequency of pulsing. Ion energy distributions for Ti and O and its dependence on the process conditions have been studied. It was found that films with the highest density and highest refractive index were grown under moderate HiPIMS conditions (moderate peak powers) resulting in only a small loss in mass-deposition rate compared to DCMS. It was further found that TiO2 films with anatase and rutile phases can be grown at room temperature without substrate heating and without post-deposition annealing.

  • 334.
    Aiempanakit, Montri
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics.
    Kubart, Tomas
    Uppsala University, Sweden.
    Larsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides2011In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 519, no 22, 7779-7784 p.Article in journal (Refereed)
    Abstract [en]

    In the further development of reactive sputter deposition, strategies which allow for stabilization of the transition zone between the metallic and compound modes, elimination of the process hysteresis, and increase of the deposition rate, are of particular interest. In this study, the hysteresis behavior and the characteristics of the transition zone during reactive high power impulse magnetron sputtering (HiPIMS) of Al and Ce targets in an Ar-O(2) atmosphere as a function of the pulsing frequency and the pumping speed are investigated. Comparison with reactive direct current magnetron sputtering (DCMS) reveals that HiPIMS allows for elimination/suppression of the hysteresis and a smoother transition from the metallic to the compound sputtering mode. For the experimental conditions employed in the present study, optimum behavior with respect to the hysteresis width is obtained at frequency values between 2 and 4 kHz, while HiPIMS processes with values below or above this range resemble the DCMS behavior. Al-O films are deposited using both HiPIMS and DCMS. Analysis of the film properties shows that elimination/suppression of the hysteresis in HiPIMS facilitates the growth of stoichiometric and transparent Al(2)O(3) at relatively high deposition rates over a wider range of experimental conditions as compared to DCMS.

  • 335.
    Aiempanakit, Montri
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Lund, Esben
    Department of Physics/Center for Materials Science and Nanotechnology, University of Oslo, Oslo, Norway.
    Kubart, Tomas
    The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Ag2Cu2O3 thin films deposited by reactive high power impulse magnetron sputtering2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Ag2Cu2O3 thin films were prepared by reactive high power impulse magnetron sputtering (HiPIMS) from an alloy silver-copper (Ag0.5Cu0.5) target on silicon and glass substrates. The effects of the oxygen gas flow and the peak power on the structural properties of the films were investigated. Structural characterization by grazing incidence X-ray diffraction measurements show that the structure of Ag2Cu2O3 is related to the oxygen flow and the peak power. Films grown with high peak power required higher oxygen flow rate in order to get stoichiometric Ag2Cu2O3 thin films. It was further found that using HiPIMS, polycrystalline Ag2Cu2O3 films can be grown at room temperature without substrate heating or post-deposition annealing, while films deposited by DCMS exhibit poor crystallinity under the same process conditions.

  • 336.
    Aiempanakit, Montri
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Lundin, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Larsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Jädernäs, Daniel
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Helmersson, Ulf
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics .
    Effects on deposition rate when varying the magnetic field strength in magnetron sputtering2008In: 14th International Congress on Thin Films,2008, 2008Conference paper (Other academic)
    Abstract [en]

    Poster

  • 337.
    Aifa, Sami
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Aydin, J
    Nordvall, G
    Lundström, Ingemar
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Svensson, Samuel
    Hermanson, O
    A basic peptide within the juxtamembrane region is required for EGF receptor dimerization2005In: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 302, no 1, 108-114 p.Article in journal (Refereed)
    Abstract [en]

    The epidermal growth factor receptor (EGFR) is fundamental for normal cell growth and organ development, but has also been implicated in various pathologies, notably tumors of epithelial origin. We have previously shown that the initial 13 amino acids (P13) within the intracellular juxtamembrane region (R645-R657) are involved in the interaction with calmodulin, thus indicating an important role for this region in EGFR function. Here we show that P13 is required for proper dimerization of the receptor. We expressed either the intracellular domain of EGFR (TKJM) or the intracellular domain lacking P13 (ΔTKJM) in COS-7 cells that express endogenous EGFR. Only TKJM was immunoprecipitated with an antibody directed against the extracellular part of EGFR, and only TKJM was tyrosine phosphorylated by endogenous EGFR. Using SK-N-MC cells, which do not express endogenous EGFR, that were stably transfected with either wild-type EGFR or recombinant full-length EGFR lacking P13 demonstrated that P13 is required for appropriate receptor dimerization. Furthermore, mutant EGFR lacking P13 failed to be autophosphorylated. P13 is rich in basic amino acids and in silico modeling of the EGFR in conjunction with our results suggests a novel role for the juxtamembrane domain (JM) of EGFR in mediating intracellular dimerization and thus receptor kinase activation and function. © 2004 Elsevier Inc. All rights reserved.

  • 338. Aifa, Sami
    et al.
    Frikha, Fakher
    Miled, Nabil
    Johansen, Knut
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Lundström, Ingemar
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Applied Physics .
    Svensson, Samuel P.S.
    Astra Zeneca.
    Phosphorylation of Thr654 but not Thr669 within the juxtamembrane domain of the EGF receptor inhibits calmodulin binding2006In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 347, no 2, 381-387 p.Article in journal (Refereed)
    Abstract [en]

    Calcium-calmodulin (CaM) binding to the epidermal growth factor receptor (EGFR) has been shown to both inhibit and stimulate receptor activity. CaM binds to the intracellular juxtamembrane (JM) domain (Met645-Phe688) of EGFR. Protein kinase C (PKC) mediated phosphorylation of Thr654 occurs within this domain. CaM binding to the JM domain inhibits PKC phosphorylation and conversely PKC mediated phosphorylation of Thr654 or Glu substitution of Thr654 inhibits CaM binding. A second threonine residue (Thr669) within the JM domain is phosphorylated by the mitogen-activated protein kinase (MAPK). Previous results have shown that CaM interferes with EGFR-induced MAPK activation. If and how phosphorylation of Thr669 affects CaM-EGFR interaction is however not known.In the present study we have used surface plasmon resonance (BIAcore) to study the influence of Thr669 phosphorylation on real time interactions between the intracellular juxtamembrane (JM) domain of EGFR and CaM. The EGFR-JM was expressed as GST fusion proteins in Escherichia coli and phosphorylation was mimicked by generating Glu substitutions of either Thr654 or Thr669. Purified proteins were coupled to immobilized anti-GST antibodies at the sensor surface and increasing concentration of CaM was applied. When mutating Thr654 to Glu654 no specific CaM binding could be detected. However, neither single substitutions of Thr669 (Gly669 or Glu669) nor double mutants Gly654/Gly669 or Gly654/Glu669 influenced the binding of CaM to the EGFR-JM. This clearly shows that PKC may regulate EGF-mediated CaM signalling through phosphorylation of Thr654 whereas phosphorylation of Thr669 seems to play a CaM independent regulatory role. The role of both residues in the EGFR-calmodulin interaction was also studied in silico. Our modelling work supports a scenario where Thr654 from the JM domain interacts with Glu120 in the calmodulin molecule. Phosphorylation of Thr654 or Glu654 substitution creates a repulsive electrostatic force that would diminish CaM binding to the JM domain. These results are in line with the Biacore experiments showing a weak binding of the CaM to the JM domain with Thr654 mutated to Glu. Furthermore, these results provide a hypothesis to how CaM binding to EGFR might both positively and negatively interfere with EGFR-activity. © 2006 Elsevier Inc. All rights reserved.

  • 339. Aifa, Sami
    et al.
    Johansen, Knut
    Nilsson, Ulrica K
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Liedberg, Bo
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Lundström, Ingemar
    Svensson, Samuel
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Pharmacology.
    Interactions between the juxtamembrane domain of the EGFR and calmodulin measured by surface plasmon resonance2002In: Cellular Signalling, ISSN 0898-6568, E-ISSN 1873-3913, Vol. 14, no 12, 1005-1013 p.Article in journal (Refereed)
    Abstract [en]

    One early response to epidermal growth factor receptor (EGFR) activation is an increase in intracellular calcium. We have used surface plasmon resonance (SPR) to study real-time interactions between the intracellular juxtamembrane (JM) region of EGFR and calmodulin. The EGFR-JM (Met644-Phe688) was expressed as a GST fusion protein and immobilised on a sensor chip surface. Calmodulin specifically interacts with EGFR-JM in a calcium-dependent manner with a high on and high off rate. Chemical modification of EGFR-JM by using arginine-selective phenylglyoxal or deletion of the basic segment Arg645-Arg657 inhibits the interaction. Phosphorylation of EGFR-JM by protein kinase C (PKC) or glutamate substitution of Thr654 inhibits the interaction, suggesting that PKC phosphorylation electrostatically interferes with calmodulin binding to basic arginine residues. Calmodulin binding was also inhibited by suramin. Our results suggest that EGFR-JM is essential for epidermal growth factor (EGF)-mediated calcium-calmodulin signalling and for signal integration between other signalling pathways.

  • 340.
    Aigner, Mats
    Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
    Existence of the Ginzburg-Landau vortex number2001In: Communications in Mathematical Physics, ISSN 0010-3616, E-ISSN 1432-0916, Vol. 216, no 1, 17-22 p.Article in journal (Refereed)
    Abstract [en]

    The existence of the Ginzburg-Landau vortex number is established for any configuration with finite action. As a consequence, Bogomol'nyi's formula for the critical action is valid for any finite action configuration.

  • 341.
    Aigner, Mats
    et al.
    Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, The Institute of Technology.
    Tjatyrko, Vitalij A.
    Linköping University, Department of Mathematics. Linköping University, The Institute of Technology.
    Nyagahakwa, Venuste
    National University of Rwanda, Rwanda .
    ON COUNTABLE FAMILIES OF SETS WITHOUT THE BAIRE PROPERTY2013In: Colloquium Mathematicum, ISSN 0010-1354, E-ISSN 1730-6302, Vol. 133, no 2, 179-187 p.Article in journal (Refereed)
    Abstract [en]

    We suggest a method of constructing decompositions of a topological space X having an open subset homeomorphic to the space (R-n , tau), where n is an integer greater than= 1 and tau is any admissible extension of the Euclidean topology of R-n (in particular, X can be a finite-dimensional separable metrizable manifold), into a countable family F of sets (dense in X and zero-dimensional in the case of manifolds) such that the union of each non-empty proper subfamily of F does not have the Baire property in X.

  • 342.
    Aihara, Shin Ichi
    et al.
    Tokyo University of Science, Japan.
    Bagchi, Arunabha
    University of Twente, Enschede, Netherlands.
    Saha, Saikat
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Adaptive Filtering for Stochastic Volatility by Using Exact Sampling2013In: 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2013), 2013, 326-335 p.Conference paper (Refereed)
    Abstract [en]

    We study the sequential identification problem for Bates stochastic volatility model, which is widely used as the model of a stock in finance. By using the exact simulation method, a particle filter for estimating stochastic volatility is constructed. The systems parameters are sequentially estimated with the aid of parallel filtering algorithm. To improve the estimation performance for unknown parameters, the new resampling procedure is proposed. Simulation studies for checking the feasibility of the developed scheme are demonstrated.

  • 343.
    Aihara, ShinIchi
    et al.
    Tokyo University of Science, Japan.
    Bagch, Arunabha
    Twente University, Netherlands.
    Saha, Saikat
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Identification of Bates Stochastic Volatility Model by Using Non-Central Chi-Square Random Generation Method2012In: Proceedings of the 37th IEEE International Conference on Acoustics, Speech, and Signal Processing, 2012, , 4 p.3905-3908 p.Conference paper (Refereed)
    Abstract [en]

    We study the identification problem for Bates stochastic volatility model, which is widely used as the model of a stock in finance. By using the exact simulation method, a particle filter for estimating stochastic volatility and its systems parameters is constructed. Simulation studies for checking the feasibility of the developed scheme are demonstrated.

  • 344.
    Aijaz, Asim
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    HiPIMS-based Novel Deposition Processes for Thin Films2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this research, high power impulse magnetron sputtering (HiPIMS) based new deposition processes are introduced to address; the issue of low degree of ionization of C in magnetron sputtering discharges, and the difficulty encountered in thin film deposition on complex-shaped surfaces. The issue of low degree of C ionization is addressed by introducing a new strategy which is based on promoting the electron impact ionization ofC by increasing the electron temperature in the plasma discharge using Ne, instead of conventionally used Ar. The Ne-based HiPIMS process provides highly ionized C fluxes which are essential for the synthesis of high-density and sp3 rich amorphous carbon (a-C) thin films such as diamond-like carbon (DLC) and tetrahedral a-C (ta-C). The feasibility of coating complex-shaped surfaces is demonstrated by using the dual-magnetron approach in an open-field (magnetic field of the magnetrons) configuration and performing sideways deposition of Ti films. The HiPIMS-based open-field configuration process enhances the sideways transport of the sputtered flux — an effect which is observed in the case of HiPIMS.

    The characterization of the Ne-HiPIMS discharge using a Langmuir probe and mass spectrometry shows that it provides an increase in the electron temperature resulting in an order of magnitude decrease in the mean ionization length of the sputtered C as compared to the conventional Ar-HiPIMS discharge. The C1+ ion energy distribution functions exhibit the presence of an energetic C1+ ion population and a substantial increase in the total C1+ ion flux. The higher C1+ ion flux facilitates the growth of sp3 rich carbon films with mass densities, measured by x-ray reflectometry, reaching as high as approx. 2.8 gcm-3.

    The dual-magnetron open-field configuration process is operated in DCMS as well as in HiPIMS modes. The plasma characterization, performed by Langmuir probe measurements and optical emission spectroscopy, shows that the plasma density in the Ti-HiPIMS discharge is higher than that of the Ti-DCMS discharge. This results in the higher ionized fraction of the sputtered Ti in the case of HiPIMS. The film uniformity and the deposition rate of the film growth, obtained by employing scanning electron microscopy, demonstrate that the sideways deposition approach can be used for depositing thin films on complex-shaped surfaces.

  • 345.
    Aijaz, Asim
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Synthesis of Carbon-based and Metal-Oxide Thin Films using High Power Impulse Magnetron Sputtering2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The work presented in this thesis deals with synthesis of carbon-based as well as metal-oxide thin films using highly ionized plasmas. The principal deposition method employed was high power impulse magnetron sputtering (HiPIMS). The investigations on plasma chemistry, plasma energetics, plasma-film interactions and its correlation to film growth and resulting film properties were made. The thesis is divided into two parts: (i) HiPIMS-based deposition of carbon-based thin films and (ii) HiPIMS-based deposition of metal-oxide thin films.

    In the first part of the thesis, HiPIMS based strategies are presented that were developed to address the fundamental issues of low degree of carbon ionization and low deposition rates of carbon film growth in magnetron sputtering. In the first study, a new strategy was introduced for increasing the degree of ionization of sputtered carbon via increasing the electron temperature in the discharge by using a higher ionization potential buffer gas (Ne) in place of commonly used Ar. A direct consequence of enhanced electron temperatures was observed in the form of measured large fluxes of ionized carbon at the substrate position. Consequently, high mass densities of the resulting amorphous carbon (a-C) thin films reaching 2.8 g/cm3 were obtained.

    In another study, feasibility of HiPIMS-based high density discharges for high-rate synthesis of dense and hard a-C thin films was explored. A strategy was compiled and implemented that entailed coupling a hydrocarbon precursor gas (C2H2) with high density discharges generated by the superposition of HiPIMS and direct current magnetron sputtering (DCMS). Appropriate control of discharge density (by tuning HiPIMS/DCMS power ratio), gas phase composition and energy of the ionized depositing species lead to a route capable of providing ten-fold increase in the deposition rate of a-C film growth compared to that obtained using HiPIMS Ar discharge in the first study. The increased deposition rate was achieved without significant incorporation of H (<10 %) and with relatively high hardness (>25 GPa) and mass density (~2.32 g/cm3). The knowledge gained in this work was utilized in a subsequent work where the feasibility of adding high ionization potential buffer gas (Ne) to increase the electron temperature in an Ar/C2H2 HiPIMS discharge was explored. It was found that the increased electron temperature lead to enhanced dissociation of hydrocarbon precursor and an increased H incorporation into the growing film. The resulting a-C thin films exhibited high hardness (~ 25 GPa), mass densities in the order of 2.2 g/cm3 and H content as low as about 11%. The striking feature of the resulting films was low stress levels where the films exhibited compressive stresses in the order of 100 MPa.

    In the second part of the thesis, investigations on reactive HiPIMS discharge characteristics were made for technologically relevant metal-oxide systems. In the first study, the discharge characteristics of Ti-O and Al-O were investigated by studying the discharge current characteristics and measuring the ion flux composition. Both, Ti-O and Al-O discharges were dominated by large fluxes of ionized metallic as well as sputtering and reactive gases species. The generation of large ionized fluxes influenced the discharge characteristics consequently surpassing the changes in the secondary electron emission yields which, in the case of DCMS discharges entail contrasting behavior of the discharge voltage for the two material systems. The study also suggested that the source of oxygen ions in the case of reactive HiPIMS is both, the target surface (via sputtering) as well as gas phase.

    In a subsequent study, the knowledge gained from the studies on metal-oxide HiPIMS discharges was utilized for investigating the behavior of reactive HiPIMS discharges related to ternary compound thin film growth. In this work Al-Si-O system, which is a promising candidate for anti-reflective and solar thermal applications, was employed to carry out the investigations under varied target compositions (Al, Al0.5Si0.5, and Al0.1Si0.9). It was found that the discharge current behavior of metal and oxide modes of Al-Si-O HiPIMS discharges were similar to those of Al-O and were independent of the target composition. The influence of energy and composition of the ionized depositing fluxes on the film growth was also investigated. It was shown that stoichiometric Al-Si-O thin films exhibiting a refractive index below 1.6 (which is desired for anti-reflective applications) can be grown. Furthermore, the refractive index and chemical composition of the resulting films were found to be unchanged with respect to the energy of the depositing species.

    The effect of ionized deposition fluxes that are generated in metal-oxide HiPIMS discharges was also investigated for the phase composition and optical properties of TiO2 thin films. It was found that energetic and ionized sputtered flux in reactive HiPIMS can be used to tailor the phase formation of the TiO2 films with high peak powers facilitating the rutile phase while the anatase phase can be obtained using low peak powers. It was also demonstrated that using HiPIMS, these phases can be obtained at room temperature without external substrate heating or  post-deposition annealing. The results on plasma and film properties were also compared with DCMS.

  • 346.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Aiempanakit, Montri
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology. Present address: Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand.
    Bruns, Stefan
    Fraunhofer Institute for Surface Engineering and Thin Films (IST), Germany.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Vergöhl, Michael
    Fraunhofer Institute for Surface Engineering and Thin Films (IST), Germany.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Exploring the potential of high power impulse magnetron sputtering for the synthesis of scratch resistant, antireflective coatings2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Broad band anti-reflective multilayer coatings require the use of a low-index material as a top layer. Normally SiO2 is used which exhibits sufficiently low refractive index (~1.5 at 550 nm) yet its low hardness (~10 GPa) hinders its application in abrasive environments. A strategy to circumnavigate these limitations is the synthesis of multicomponent materials that combine good mechanical and optical performance. In this work we synthesize Al-Si-O thin films seeking to combine the low refractive index of SiO2 and the relatively high hardness of Al2O3. The potential of reactive high power impulse magnetron sputtering (HiPIMS) for synthesizing Al-Si-O suitable for top-layers in anti-reflective coating stacks is explored by depositing films in an Ar+O2 ambient under varied target compositions (Al0.5Si0.5 and Al0.1Si0.9). The behavior of discharge current in metal and oxide mode is correlated with the plasma composition, plasma energetics as well as target surface composition in order to obtain information about the chemical nature and the energy of the film forming species. Plasma composition and plasma energetics are investigated by measuring electron density, electron temperature as well as energy distributions and as fluxes of Ar+, Al+, Si+ and O+ ions. Monte-Carlo based computer simulations are employed to assess the ion-target surface interactions to gain insight into the discharge characteristics as well as film growth. The properties of the grown films (chemical composition, mechanical and optical properties) are investigated and an understanding of the reactive HiPIMS-based growth of anti-reflective Al-Si-O thin films is established. For reference, the plasma and film properties of Al-O are also studied.

  • 347.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Louring, Sascha
    Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Synthesis of amorphous carbon thin films using acetylene-based high power impulse magnetron sputtering discharges2013Manuscript (preprint) (Other academic)
    Abstract [en]

    Amorphous carbon (a-C) thin films are synthesized using high power impulse magnetron sputtering (HiPIMS) based Ne-Ar/C2H2 discharges. Plasma properties and film growth are investigated under different gas phase composition and operating pressures. Film mass densities, H content, hardness and compressive stresses are measured. Mass densities in the order of 2.2 g/cm3, hardness close to 25 GPa and H content as low as 11% are obtained. The film properties manifest a dependence on energy and flux of the depositing species and energetic ion bombardment driven structural changes in the films are found to govern the resulting film properties.

  • 348.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology. Uppsala University, Sweden.
    Louring, Sascha
    Aarhus University, Denmark; Danish Technology Institute, Denmark.
    Lundin, Daniel
    University of Paris Saclay, France.
    Kubart, Tomas
    Uppsala University, Sweden.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Nanoscale engineering. Linköping University, Faculty of Science & Engineering.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering.
    Synthesis of hydrogenated diamondlike carbon thin films using neon-acetylene based high power impulse magnetron sputtering discharges2016In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 34, no 6, 061504Article in journal (Refereed)
    Abstract [en]

    Hydrogenated diamondlike carbon (DLC:H) thin films exhibit many interesting properties that can be tailored by controlling the composition and energy of the vapor fluxes used for their synthesis. This control can be facilitated by high electron density and/or high electron temperature plasmas that allow one to effectively tune the gas and surface chemistry during film growth, as well as the degree of ionization of the film forming species. The authors have recently demonstrated by adding Ne in an Ar-C high power impulse magnetron sputtering (HiPIMS) discharge that electron temperatures can be effectively increased to substantially ionize C species [Aijaz et al., Diamond Relat. Mater. 23, 1 (2012)]. The authors also developed an Ar-C2H2 HiPIMS process in which the high electron densities provided by the HiPIMS operation mode enhance gas phase dissociation reactions enabling control of the plasma and growth chemistry [Aijaz et al., Diamond Relat. Mater. 44, 117 (2014)]. Seeking to further enhance electron temperature and thereby promote electron impact induced interactions, control plasma chemical reaction pathways, and tune the resulting film properties, in this work, the authors synthesize DLC: H thin films by admixing Ne in a HiPIMS based Ar/C2H2 discharge. The authors investigate the plasma properties and discharge characteristics by measuring electron energy distributions as well as by studying discharge current characteristics showing an electron temperature enhancement in C2H2 based discharges and the role of ionic contribution to the film growth. These discharge conditions allow for the growth of thick (amp;gt;1 mu m) DLC: H thin films exhibiting low compressive stresses (similar to 0.5 GPa), high hardness (similar to 25 GPa), low H content (similar to 11%), and density in the order of 2.2 g/cm(3). The authors also show that film densification and change of mechanical properties are related to H removal by ion bombardment rather than subplantation. (C) 2016 American Vacuum Society.

  • 349.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Larsson, Petter
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Dual-magnetron open field sputtering system for sideways deposition of thin films2010In: SURFACE and COATINGS TECHNOLOGY, ISSN 0257-8972, Vol. 204, no 14, 2165-2169 p.Article in journal (Refereed)
    Abstract [en]

    A dual-magnetron system for deposition inside tubular substrates has been developed. The two magnetrons are facing each other and have opposing magnetic fields forcing electrons and thereby also ionized material to be transported radially towards the substrate. The depositions were made employing direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HiPIMS). To optimize the deposition rate, the system was characterized at different separation distances between the magnetrons under the same sputtering conditions. The deposition rate is found to increase with increasing separation distance independent of discharge technique. The emission spectrum from the HiPIMS plasma shows a highly ionized fraction of the sputtered material. The electron densities of the order of 10(16) m(-3) and 10(18) m(-3) have been determined in the DCMS and the HiPIMS plasma discharges respectively. The results demonstrate a successful implementation of the concept of sideways deposition of thin films providing a solution for coating complex shaped surfaces.

  • 350.
    Aijaz, Asim
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Sarakinos, Kostas
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Lundin, Daniel
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    Brenning, Nils
    Royal Institute of Technology.
    Helmersson, Ulf
    Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
    A strategy for increased carbon ionization in magnetron sputtering discharges2012In: Diamond and related materials, ISSN 0925-9635, E-ISSN 1879-0062, Vol. 23, 1-4 p.Article in journal (Refereed)
    Abstract [en]

    A strategy that facilitates a substantial increase of carbon ionization in magnetron sputtering discharges is presented in this work. The strategy is based on increasing the electron temperature in a high power impulse magnetron sputtering discharge by using Ne as the sputtering gas. This allows for the generation of an energetic C+ ion population and a substantial increase in the C+ ion flux as compared to a conventional Ar-HiPIMS process. A direct consequence of the ionization enhancement is demonstrated by an increase in the mass density of the grown films up to 2.8 g/cm3; the density values achieved are substantially higher than those obtained from conventional magnetron sputtering methods.

45678910 301 - 350 of 28828
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf