Change search
Refine search result
572573574575 28701 - 28714 of 28714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 28701.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    On the Complexity of Very Large Multi-User MIMO Detection2014In: 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, IEEE Press, 2014, 55-59 p.Conference paper (Refereed)
    Abstract [en]

    This work discusses efficient techniques for detection in large-size multi-user multiple-input multiple-output (MIMO) systems that are highly overdetermined. We exemplify the application of conjugate gradient methods in the setup of our interest and compare its performance with respect to methods based on the Neumann series expansion. We bring to light some important insights on the performance versus complexity tradeoffs that have not been uplifted before.

  • 28702.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    SUMIS: Near-Optimal Soft-In Soft-Out MIMO Detection with Low and Fixed Complexity2014In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 62, no 12, 3084-3097 p.Article in journal (Refereed)
    Abstract [en]

    The fundamental problem of interest here is soft-input soft-output multiple-input multiple-output (MIMO) detection. We propose a method, referred to as subspace marginalization with interference suppression (SUMIS), that yields unprecedented performance at low and fixed (deterministic) complexity. Our method provides a well-defined tradeoff between computational complexity and performance. Apart from an initial sorting step consisting of selecting channel-matrix columns, the algorithm involves no searching nor algorithmic branching; hence the algorithm has a completely predictable run-time and allows for a highly parallel implementation. We numerically assess the performance of SUMIS in different practical settings: full/partial channel state information, sequential/iterative decoding, and low/high rate outer codes. We also comment on how the SUMIS method performs in systems with a large number of transmit antennas.

  • 28703.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Allocation of Computational Resources for Soft MIMO Detection2011In: IEEE Journal of Selected Topics in Signal Processing, ISSN 1932-4553, Vol. 5, no 8, 1451-1461 p.Article in journal (Refereed)
    Abstract [en]

    We consider soft MIMO detection for the case of block fading. That is, the transmitted codeword spans over several independent channel realizations and several instances of the detection problem must be solved for each such realization. We develop methods that adaptively allocate computational resources to the detection problems of each channel realization, under a total per-codeword complexity constraint. Our main results are a formulation of the problem as a mathematical optimization problem with a well-defined objective function and constraints, and algorithms that solve this optimization problem efficiently computationally.

  • 28704.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    New Results on Adaptive Computational Resource Allocation in Soft MIMO Detection2011In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE conference proceedings, 2011, 2972-2975 p.Conference paper (Refereed)
    Abstract [en]

    The fundamental problem of our interest is soft MIMO detection for  the case of block fading, i.e., when the transmitted codeword spans  over several independent channel realizations. We develop methods  that adaptively allocate computational resources to the detection  problems of each channel realization, under a total per-codeword  complexity constraint. The new results consist of a new algorithm, a  new performance measure, and a thorough complexity discussion.

  • 28705.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Optimization of Computational Resource Allocation for Soft MIMO Detection2009In: Proceedings of the 43rd Asilomar Conference on Signals, Systems, and Computers (ACSSC'09), IEEE , 2009, 1488-1492 p.Conference paper (Refereed)
    Abstract [en]

    We consider soft MIMO detection for the case of block fading. That is, the transmitted codeword spans over several independent channel realizations and several instances of the detection problem must be solved for each such realization. We develop methods that adaptively allocate the computational resources to the detection problems of each channel realization, under a total per-codeword complexity constraint. Our main results are a formulation of the problem as a mathematical optimization problem and a greedy algorithm to approximate it in a computationally feasible fashion.

  • 28706.
    Čirkić, Mirsad
    et al.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Persson, Daniel
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Erik G.
    Linköping University, Department of Electrical Engineering, Communication Systems. Linköping University, The Institute of Technology.
    Larsson, Jan-Åke
    Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, The Institute of Technology.
    Gaussian Approximation of the LLR Distribution for the ML and Partial Marginalization MIMO detectors2011In: Proceedings of the IEEE International Conference on Acoustics, Speech and SignalProcessing (ICASSP), IEEE conference proceedings, 2011, 3232-3235 p.Conference paper (Refereed)
    Abstract [en]

    We derive a Gaussian approximation of the LLR distribution  conditioned on the transmitted signal and the channel matrix for the  soft-output via partial marginalization MIMO detector. This detector  performs exact ML as a special case. Our main results consist of  discussing the operational meaning of this approximation and a proof  that, in the limit of high SNR, the LLR distribution of interest  converges in probability towards a Gaussian distribution.

  • 28707.
    Šmídl, Václav
    Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, The Institute of Technology.
    Forgetting in Marginalized Particle Filtering and its Relation to Forward Smoothing2011Report (Other academic)
    Abstract [en]

    The problem of degeneracy in marginalized particle filtering is addressed. In particular, we note that the degeneracy is caused by loss of entropy of the posterior distribution and design maximum entropy estimates to prevent this. The main technique used in this report is known as forgetting. Itis shown that it can be used to suppress the problem with degeneracy, however, it is not a proper cure for the problem of stationary parameters. The problem of marginal-marginalized particle filter for sufficient statistics is also studied. The resulting algorithm is found to have remarkable similarities with the algorithm known as forward smoothing.

  • 28708.
    Ščajev, Patrik
    et al.
    Institute of Applied Research, Vilnius University, Vilnius, Lithuania.
    Hassan, Jawad
    Institute of Applied Research, Vilnius University, Vilnius, Lithuania.
    Jarašiūnas, Kęstutis
    Institute of Applied Research, Vilnius University, Vilnius, Lithuania.
    Kato, Masashi
    Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan.
    Henry, Anne
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Bergman, J Peder
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Comparative Studies of Carrier Dynamics in 3C-SiC Layers Grown on Si and 4H-SiC Substrates2011In: Journal of Electronic Materials, ISSN 0361-5235, E-ISSN 1543-186X, Vol. 40, no 4, 394-399 p.Article in journal (Refereed)
    Abstract [en]

    Time-resolved nonlinear optical techniques were applied to determine the electronic parameters of cubic silicon carbide layers. Carrier lifetime, tau, and mobility, mu, were measured in a free-standing wafer grown on undulant Si and an epitaxial layer grown by hot-wall chemical vapor deposition (CVD) on a nominally on-axis 4H-SiC substrate. Nonequilibrium carrier dynamics was monitored in the 80 K to 800 K range by using a picosecond free carrier grating and free carrier absorption techniques. Correlation of tau(T) and mu (a)(T) dependencies was explained by the strong contribution of diffusion-limited recombination on extended defects in the layers. A lower defect density in the epitaxial layer on 4H-SiC was confirmed by a carrier lifetime of 100 ns, being similar to 4 times longer than that in free-standing 3C.

  • 28709.
    Žitinski Elías, Paula
    Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, The Institute of Technology.
    Halftoning for Multi-Channel Printing: Algorithm Development, Implementation and Verification2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    A seemingly straightforward way to enhance the quality of printed images is to increase the number of colorants, beyond the four traditionally used, in multi-channel printing. Potential improvements to reproduced images include: increased colour accuracy, enhanced colour smoothness and reduced image graininess. Nevertheless, numerous challenges exist, one of them being the implementation of halftoning algorithms, which transform the original image into a binary one that is reproducible by the printing system. This thesis concerns the development, implementation and verification of halftoning algorithms suitable for an increased number of colorants in multi-channel printing.

    The first focus in this thesis is on the implementation of an amplitude modulated (AM) halftoning method for seven-channel printing utilizing CMYKRGB colorants. The proposed AM halftoning method utilizes non-orthogonal halftone screens instead of orthogonal ones (dots), thus enabling a wider angle range for the channels that makes possible to accommodate multi-channel impressions. The performance of the non-orthogonal halftoning method was evaluated by computational simulation of channel misregistration for 1600 different scenarios and assessment of printed orthogonal and non-orthogonal patches. The simulated and printed results demonstrate that the proposed halftoning method utilizing non-orthogonal screens shows no visible moiré and produces smaller colour shifts in case of misregistration when compared to orthogonal halftoning.

    However, the layer thickness of the combined colorants is not controlled by the aforementioned multi-channel AM halftoning approach. Therefore, the second focus in this thesis concerns the adjustment and implementation of a multilevel halftoning algorithm for achromatic and chromatic inks. In this algorithm, a channel is processed so that it can be printed using multiple inks of same hue value, achieving a single ink layer. Here, the thresholds for ink separation and dot gain compensation pose an interesting challenge. Since dot gain originates from the interaction between a specific ink and specific paper, compensating the original image for multilevel halftoning means expressing the dot gain of multiple inks in terms of the nominal coverage of a single ink. The applicability of the proposed multilevel halftoning workflow is demonstrated using multiple inks while avoiding dot-on-dot placement and accounting for dot gain. The results also show that the multilevel halftoned image is visually improved in terms of graininess and detailenhancement when compared to a bi-level halftoned image.

  • 28710.
    Žukauskaitė, Agnė
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Metastable ScAlN and YAlN Thin Films Grown by Reactive Magnetron Sputter Epitaxy2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Metastable ScxAl1-xN and YxAl1-xN thin films were deposited in an ultra high vacuum system using reactive magnetron sputter epitaxy from elemental Al, Sc, and Y targets in Ar/N2 gas mixture. Their structural, electrical, optical, mechanical, and piezoelectrical properties were investigated by using the transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, I-V and C-V measurements, nanoindentation, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry.

    Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Decreasing the growth temperature down to 400 °C improved the microstructure and crystalline quality of the material. Microstructure of the films had a stronger influence on piezoelectric properties than the crystalline quality, which affected the leakage currents. When x was increased from x=0 to x=0.3, the hardness and reduced Young’s modulus Er showed a decrease from 17 GPa to 11 GPa, and 265 GPa down to 224 GPa, respectively. In ScxAl1-xN/InyAl1-yN superlattices, ScxAl1-xN layers negative lattice mismatched to In-rich InyAl1-yN were found to be stable at higher Sc concentration (x=0.4) than lattice-matched or positive lattice mismatched layers, confirmed by first principle (ab initio) calculations using density-functional formalism.

    Al-rich YxAl1-xN thin films were synthesized and reported for the first time. Formation of solid solution was observed up to x=0.22 and an increase in growth temperature up to 900°C improved the crystalline quality of the YxAl1-xN films. The band gap of YxAl1-xN decreased from 6.2 eV for AlN down to 4.5 eV (x=0.22) and was shown to follow Vegard’s rule. Refractive indices and extinction coefficients were also determined. Lattice constants of wurtzite YxAl1-xN measured experimentally are in good agreement with theoretical predictions obtained through ab initio calculations. The mixing enthalpy

  • 28711.
    Žukauskaitė, Agnė
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Metastable YAlN and ScAlN thin films: growth and characterization2012Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    ScxAl1-xN and YxAl1-xN thin films were deposited in a ultra high vacuum system using reactive magnetron co-sputtering from elemental Al, Sc and Y targets in Ar/N2. Their mechanical, electrical, optical, and piezoelectrical properties were investigated with the help of transmission electron microscopy, xray diffraction, ellipsometry, I-V and C-V measurements, and two different techniques for piezoelectric characterization: piezoresponse force microscopy and double beam interferometry. Compared to AlN, improved electromechanical coupling and increase in piezoelectric response was found in ScxAl1-xN/TiN/Al2O3 structures with Sc content up to x=0.2. Microstructure of the films had a stronger influence on piezoelectric properties than the crystalline quality, which affected the leakage currents. YxAl1-xN thin films show a formation of solid solution up to x=0.22. Lattice constants obtained experimentally are in good agreement with theoretical predictions obtained through first principle (ab initio) calculations using density-functional formalism. The mixing enthalpy for wurtzite, cubic, and layered hexagonal phases of the YxAl1-xN system was also calculated.

  • 28712.
    Žukauskaitė, Agnė
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tholander, Christopher
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pališaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Darakchieva, Vanya
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Ben Sedrine, Nebiha
    Instituto Tecnológico e Nuclear, 2686-953 Sacavém and CFNUL, Lisbon 1649-003, Portugal.
    Tasnádi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    YxAl1-xN Thin Films2012In: Journal of Physics D: Applied Physics, ISSN 0022-3727, E-ISSN 1361-6463, Vol. 45, no 42, 422001- p.Article in journal (Refereed)
    Abstract [en]

    Reactive magnetron sputtering was used to deposit YxAl1-xN thin films, 0≤x≤0.22, onto Al2O3(0001) and Si(100) substrates. X-ray diffraction and analytical electron microscopy show that the films are solid solutions. Lattice constants are increasing with Y concentration, in agreement with ab initio calculations. Spectroscopic ellipsometry measurements reveal a band gap decrease from 6.2 eV (x=0) down to 4.9 eV (x=0.22). Theoretical investigations within the special quasirandom structure approach show that the wurtzite structure has the lowest mixingenthalpy for 0≤x≤0.75.

  • 28713.
    Žukauskaitė, Agnė
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology. Fraunhofer Institute for Applied Solid State Physics, Freiburg, Germany.
    Tholander, Christopher
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Tasnádi, Ferenc
    Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, The Institute of Technology.
    Alling, Björn
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pališaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Lu, Jun
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Stabilization of Wurtzite Sc0.4Al0.6N in Pseudomorphic Epitaxial ScxAl1-xN/InyAl1-yN Superlattices2015In: Acta Materialia, ISSN 1359-6454, E-ISSN 1873-2453, Vol. 94, 101-110 p.Article in journal (Refereed)
    Abstract [en]

    Pseudomorphic stabilization in wurtzite ScxAl1-xN/AlN and ScxAl1-xN/InyAl1-yN superlattices (x=0.2, 0.3, and 0.4; y=0.2-0.72), grown by reactive magnetron sputter epitaxy was investigated. X-ray diffraction and transmission electron microscopy show that in ScxAl1-xN/AlN superlattices the compressive biaxial stresses due to positive lattice mismatch in Sc0.3Al0.7N and Sc0.4Al0.6N lead to loss of epitaxy, although the structure remains layered. For the negative lattice mismatched In-rich ScxAl1-xN/InyAl1-yN superlattices a tensile biaxial stress promotes the stabilization of wurtzite ScxAl1-xN even for the highest investigated concentration x=0.4. Ab initio calculations with fixed in-plane lattice parameters show a reduction in mixing energy for wurtzite ScxAl1-xN under tensile stress when x≥0.375 and support the experimental results.

  • 28714.
    Žukauskaitė, Agnė
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Wingqvist, Gunilla
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Pališaitis, Justinas
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Jensen, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Persson, Per O. Å.
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Matloub, Ramin
    Ceramics Laboratory, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, SwitzerlandNational Laboratory, Oak Ridge, TN 37831, United States.
    Muralt, Paul
    Ceramics Laboratory, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland.
    Kim, Yunseok
    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
    Birch, Jens
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Hultman, Lars
    Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
    Microstructure and Dielectric Properties of Piezoelectric Magnetron Sputtered w-ScxAl1-xN thin films2012In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 111, no 9, 093527- p.Article in journal (Refereed)
    Abstract [en]

    Piezoelectric wurtzite ScxAl1-xN (x=0, 0.1, 0.2, 0.3) thin films were epitaxially grown by reactive magnetron co-sputtering from elemental Sc and Al targets. Al2O3(0001) wafers with TiN(111) seed and electrode layers were used as substrates. X-ray diffraction shows that an increase in the Sc content results in the degradation of the crystalline quality. Samples grown at 400 °C possess true dielectric behavior with quite low dielectric losses and the leakage current is negligible. For ScAlN samples grown at 800 °C, the crystal structure is poor and leakage current is high. Transmission electron microscopy with energy dispersive x-ray spectroscopy mapping shows a mass separation into ScN-rich and AlN-rich domains for x≥0.2 when substrate temperature is increased from 400 to 800 °C. The piezoelectric response of epitaxial ScxAl1-xN films measured by piezoresponse force microscopy and double beam interferometry shows up to 180% increase by the addition of Sc up to x=0.2 independent of substrate temperature, in good agreement with previous theoretical predictions based on density-functional theory.

572573574575 28701 - 28714 of 28714
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf