Change search
Refine search result
1234567 1 - 50 of 1624
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdelhamid, Hani Nasser
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bermejo-Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan2017In: Microchimica Acta, ISSN 0026-3672, E-ISSN 1436-5073, Vol. 184, no 9, p. 3363-3371Article in journal (Refereed)
    Abstract [en]

    The preparation of a highly water stable and porous lanthanide metal-organic framework (MOF) nanoparticles (denoted SUMOF-7II; SU refers to Stockholm University) is described. SUMOF-7II was synthesized starting from the tritopic linker of 2,4,6-tri-p-carboxyphenyl pyridine (H3L2) and La(III) as metal clusters. SUMOF-7II forms a stable dispersion and displays high fluorescence emission with small variation over the pH range of 6 to 12. Its fluorescence is selectively quenched by Fe(III) ions compared to other metal ions. The intensity of the fluorescene emission drops drops linearly in 16.6–167 μM Fe(III) concentration range, and Stern-Volmer plots are linear. The limit of detection (LOD) is 16.6 μM (at an S/N ratio of >3). This indicator probe can also be used for selective detection of tryptophan among several amino acids. Compared to the free linker H3L2, SUMOF-7II offers improved sensitivity and selectivity of the investigated species.

  • 2.
    Abdelhamid, Hani
    et al.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Wilk-Kozubek, Magdalena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Ahmed, M. El-Zohry
    Valiente, Alejandro
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mudring, Anja-Verena
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Luminescence Properties for a Family of Highly Stable Lanthanide Metal-Organic FrameworksManuscript (preprint) (Other academic)
  • 3.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Substituent Effects in Molecular Ruthenium Water Oxidation Catalysts Based on Amide Ligands2017In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 9, no 9, p. 1583-1587Article in journal (Refereed)
    Abstract [en]

    The production of clean and sustainable energy is considered as one of the most urgent issues for our society. Mastering the oxidation of water to dioxygen is essential for the production of solar fuels. A study of the influence of the substituents on the catalytic activity of a series of mononuclear Ru complexes (2a-e) based on a tetradentate ligand framework is presented. At neutral pH, using [Ru(bpy)(3)](PF6)(3) (bpy=2,2'-bipyridine) as the terminal oxidant, a good correlation between the turnover frequency (TOF) and the Hammett sigma(meta) parameters was obtained. Additionally, a general pathway for the deactivation of Ru-based catalysts 2a-e during the catalytic oxidation of water through poisoning by carbon monoxide was demonstrated. These results highlight the importance of ligand design for fine-tuning the catalytic activity of water oxidation catalysts.

  • 4.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University Fayoum, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Bjorn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 24, p. 3448-3456Article in journal (Refereed)
    Abstract [en]

    Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.

  • 5. Abrahamsson, Maria
    et al.
    Lundqvist, Maria J.
    Wolpher, Henriette
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Bergquist, Jonas
    Rasmussen, Torben
    Becker, Hans-Christian
    Hammarström, Leif
    Norrby, Per-Ola
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Persson, Petter
    Steric influence on the excited-state lifetimes of ruthenium complexes with bipyridyl-alkanylene-pyridyl ligands2008In: Inorganic Chemistry, ISSN 0020-1669, Vol. 47, no 9, p. 3540-3548Article in journal (Refereed)
  • 6. Abrahamsson, Maria
    et al.
    Wolpher, Henriette
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johansson, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Larsson, Jan
    Kritikos, Mikael
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry, Structural Chemistry.
    Norrby, Per-Ola
    Bergquist, Jonas
    Sun, Licheng
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Hammarström, Leif
    A New Strategy for Improvement of Photophysical Properties in Ruthenium(II) Polypyridyl Complexes. Synthesis, Photophysical and Electrochemical characterisation of Six Mononuclear Ruthenium(II) Bisterpyridine Type Complexes2005In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 44, no 9, p. 3215-3225Article in journal (Refereed)
    Abstract [en]

    The synthesis and characterization of six ruthenium(II) bistridentate polypyridyl complexes is described. These were designed on the basis of a new approach to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. By the use of a bipyridylpyridyl methane ligand in place of terpyridine, the coordination environment of the metal ion becomes nearly octahedral and the rate of deactivation via ligand-field (i.e., metal-centered) states was reduced as shown by temperature-dependent emission lifetime studies. Still, the possibility to make quasi-linear donor−ruthenium−acceptor triads is maintained in the complexes. The most promising complex shows an excited-state lifetime of τ = 15 ns in alcohol solutions at room temperature, which should be compared to a lifetime of τ = 0.25 ns for [Ru(tpy)2]2+. The X-ray structure of the new complex indeed shows a more octahedral geometry than that of [Ru(tpy)2]2+. Most importantly, the high excited-state energy was retained, and thus, so was the potential high reactivity of the excited complex, which has not been the case with previously published strategies based on bistridentate complexes.

  • 7.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Alkene and Imino Reductions by Organocatalysis2008In: Modern Reduction Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim , 2008, p. 341-361Chapter in book (Refereed)
  • 8.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Product Class 2: Epoxides (Oxiranes): Synthesis from Alkenes by Metal-Mediated Oxidation2008In: Houben-Weyl Methods of Molecular Transformations: Compounds with One Saturated Carbon-Heteroatom Bond, Georg Thieme Verlag KG, Stuttgart , 2008, p. 227-276Chapter in book (Refereed)
  • 9.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalyzed epoxidation of alkenes2010In: Modern Oxidation Methods / [ed] Jan-Erling Bäckvall, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA , 2010, 2, p. 37-84Chapter in book (Other academic)
  • 10.
    Adrian Meredith, Jenny
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Inhibitors Targeting the Aspartic Proteases HIV-1 PR and BACE-12009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the synthesis of molecules designed for inhibition of two aspartic proteases, viral HIV-1 PR and human BACE-1. It also reports on the structure activity relationships of the targeted enzyme inhibitors.

    It is estimated that currently 33 million people are infected with HIV, the causative agent of AIDS. The virus targets T-lymphocytes and macrophages of the human immune system. The HIV-1 PR plays an important role in the viral replication, and by inhibiting the enzyme the disease progression can be slowed down or even halted.

    Herein is reported the design and synthesis of a series of HIV-1 PR inhibitors with novel P2 substituents of which several inhibit the enzyme in the nanomolar range. The aim of the second work was to further develop the inhibitors by the introduction of fluorine. Several attempts were performed to fluorinate different P2-substituents.

    Alzheimer’s disease (AD) is neurodegenerative, progressive and fatal disorder of the brain. It is associated with accumulation of plaques and tangles that cause impairment and functional decline of brain tissue which result in loss of memory and cognition. The plaques are mainly constituted of amyloid-β peptides that are generated in two steps from the amyloid precursor protein (APP). The cleavage sequence is initiated by the aspartic protease BACE-1, which makes the enzyme a key target in the effort of finding a therapy that aim to slow down the progression of AD.

    Herein are enclosed the development of two series of potent BACE-1 inhibitors. In the first work a synthetic strategy was developed to truncate a previously reported hydroxyethylene core structure in order to generate more drug-like inhibitors. This generated a series of truncated inhibitors where two amide bonds have been replaced with an ether - or alternatively a secondary amine linkage. A number of these inhibitors show potency against BACE-1. In the second part of the work the aim was investigate the effect of alterations in the P1 position. Five scaffolds with new P1 substituents were designed, synthesized and coupled with two different P2-P3 substituents. This resulted in a series of potent inhibitors that inhibit BACE-1 in the nanomolar range.

  • 11.
    Adrian Meredith, Jenny
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Björklund, Catarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Edlund, Michael
    Jansson, Katarina
    Lindberg, Jimmy
    Vrang, Lotta
    Hallberg, Anders
    Institutionen för läkemedelskemi, Uppsala universitet.
    Rosenquist, Åsa
    Samuelsson, Bertil
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of BACE-1 Inhibitors Containing a New Hydroxyethylene (HE) Scaffold: Potent activities in a cellular assayManuscript (preprint) (Other academic)
    Abstract [en]

    In a preceding report from our group we disclosed the development of a novel HE transition state isostere with a difluorophenoxymethyl side chain in the P1 position and a methoxy group in the P1’ position furnishing highly potent inhibitors of BACE-1 (i.e. lead compound 1), which moreover exhibit very promising selectivity over cathepsin D. In a continuation of this work with the aim at improving on the cell-based activity and pharmacokinetic properties, we have further developed the SAR for the P1 side chain of inhibitor 1 whereby the P1 side chain oxygen has been substituted for an amine, a carbon or a bond. The chemistry developed for the previous HE inhibitor structure 1 has now been extended to readily accommodate the introduction of new P1 side chains into this new HE scaffold. These modifications have given rise to several highly potent inhibitors where the most potent displayed a BACE-1 Ki value of 0.2 nM and a cell-based Aβ40 IC50 value of 9 nM. Thus, regarding the enzyme inhibition in the cell assay a more than 600-fold improvement compared to compound 1 was achieved via minor structural alterations.

  • 12.
    Adrian Meredith, Jenny
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Björklund, Catarina
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jansson, Katarina
    Hallberg, Anders
    Institutionen för läkemedelskemi, Uppsala universitet.
    Rosenquist, Åsa
    Samuelsson, Bertil
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    P2’-truncated BACE-1 inhibitors with a novel hydroxethylene-like core2010In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 45, no 2, p. 542-554Article in journal (Refereed)
    Abstract [en]

    Highly potent BACE-1 protease inhibitors derived from a novel hydroxyethylene-like core structure were recently developed by our group using X-ray crystal structure data and molecular modelling. In a continuation of this work guided by molecular modelling we have explored a truncated core motif where the P2’ amide group is replaced by an ether linkage resulting in a set of alkoxy, aryloxy and alkylaryl groups, with the overall aim to reduce molecular weight and the number of amide bonds to increase permeability and bestow the inhibitors with drug-like features. The most potent of these inhibitors displayed a BACE-1 IC50 value of 140 nM. The synthesis of these BACE-1 inhibitors utilizes readily available starting materials, furnishing the target compounds in good overall yields.

  • 13.
    Adrian Meredith, Jenny
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Wallberg, Hans
    Vrang, Lotta
    Oscarson, Stefan
    Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
    Parkes, Kevin
    Hallberg, Anders
    Institutionen för läkemedelskemi, Uppsala universitet.
    Samuelsson, Bertil
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Design and Synthesis of Novel P2 Substituents in Diol-based HIV Protease Inhibitors2010In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 45, no 1, p. 160-170Article in journal (Refereed)
    Abstract [en]

    The synthesis and SAR of HIV-1 protease inhibitors containing novel P2 structural elements are presented. The inhibitors were designed having hydrogen bond accepting P2 substituents to probe potential favorable interactions to Asp-29/Asp-30 of the HIV-1 protease backbone utilizing inhibitor 3 as a model template. Several inhibitors were synthesized from an L-Val-methylamide P2 motif by appending hydrogen bonding moieties from either the isopropyl side chain or from the methylamide portion. The most promising inhibitors 4a and 4e displayed Ki values of 1.0 nM and 0.7 nM respectively and EC50 values in the MT4 cell-based assay of 0.17 µM and 0.33 µM respectively, a slight loss in potency compared to lead inhibitor 3. These inhibitors were also tested against an HIV protease inhibitor resistant strain carrying the M46I, V82F, and I84V mutations. Inhibitors 4a and 4e displayed a 3 and 4 fold change respectively compared with HIV wild type, whereas lead inhibitor 3 showed a higher 9 fold change. This study further demonstrate the chemical tractability of the approach where various P2 substituents can be introduced in just one chemical step from lactone x enabling facile modifications of the overall properties in this inhibitor class.

  • 14. Afewerki, Samson
    et al.
    Breistein, Palle
    Deiana, Luca
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dziedzic, Pawel
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ibrahem, Ismail
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic enantioselective β -alkylation of α,β-unsaturated aldehydes by combination of transition-metal- and aminocatalysis: Total synthesis of bisabolane sesquiterpenes2011In: Chemistry: a European Journal, ISSN 0947-6539, Vol. 17, no 32, p. 8784-8788Article in journal (Refereed)
  • 15. Afewerki, Samson
    et al.
    Ibrahem, Ismail
    Rydfjord, Jonas
    Breistein, Palle
    Córdova, Armando
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Direct Regiospecific and Highly Enantioselective Intermolecular α-Allylic Alkylation of Aldehydes by a Combination of Transition-Metal and Chiral Amine Catalysts2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 10, p. 2972-2977Article in journal (Refereed)
    Abstract [en]

    The first direct intermolecular regiospecific and highly enantioselective a-allylic alkylation of linear aldehydes by a combination of achiral bench-stable Pd0 complexes and simple chiral amines as co-catalysts is disclosed. The co-catalytic asymmetric chemoselective and regiospecific a-allylic alkylation reaction is linked in tandem with in situ reduction to give the corresponding 2-alkyl alcohols with high enantiomeric ratios (up to 98:2 e.r.; e.r.=enantiomeric ratio). It is also an expeditious entry to valuable 2-alkyl substituted hemiacetals, 2-alkyl-butane-1,4-diols, and amines. The concise co-catalytic asymmetric total syntheses of biologically active natural products (e.g., Arundic acid) are disclosed.

  • 16. Agasti, Soumitra
    et al.
    Maity, Soham
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Maiti, Debabrata
    Palladium-Catalyzed Synthesis of 2,3-Disubstituted Benzofurans: An Approach Towards the Synthesis of Deuterium Labeled Compounds2015In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 357, no 10, p. 2331-2338Article in journal (Refereed)
    Abstract [en]

    Palladium-catalyzed oxidative annulations between phenols and alkenylcarboxylic acids produced a library of benzofuran compounds. Depending on the nature of the substitution of the phenol precursor, either 2,3-dialkylbenzofurans or 2-alkyl-3-methylene-2,3-dihydrobenzofurans can be synthesized with excellent regioselectivity. Reactions between conjugated 5-phenylpenta-2,4-dienoic acids and phenol gave 3-alkylidenedihydrobenzofuran alkaloid motifs while biologically active 7-arylbenzofuran derivatives were prepared by starting from 2-phenylphenols. More interestingly, selective incorporation of deuterium from D2O has been discovered, which offers an attractive one-step method to access deuterated compounds.

  • 17.
    Aggarwal, Varinder K.
    et al.
    Bristol University.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University of Bristol, Bristol, UK.
    Enantioselective α-arylation of cyclohexanones with diaryl iodonium salts: Application to the synthesis of (-)-epibatidine.2005In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 44, no 34, p. 5516-5519Article in journal (Refereed)
    Abstract [en]

    The direct asym. α-arylation of prochiral ketones has been effected using chiral lithium amide bases and diaryl iodonium salts. The methodol. has been employed in a short total synthesis of the alkaloid (-)-epibatidine. [on SciFinder(R)]

  • 18.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lenormand, Maud
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Alkylation of (Hetero)Aromatic Amines with Alcohols Catalyzed by a Ruthenium Pincer Complex2012In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 14, no 6, p. 1456-1459Article in journal (Refereed)
    Abstract [en]

    A readily available pincer ruthenium(II) complex catalyzes the selective monoalkylation of (hetero)aromatic amines with a wide range of primary alcohols (including pyridine-, furan-, and thiophene-substituted alcohols) with high efficiency when used in low catalyst loadings (1 mol %). Tertiary amine formation via polyalkylation does not occur, making this ruthenium system an excellent catalyst for the synthesis of sec-amines.

  • 19.
    Agrawal, Santosh
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martínez-Castro, Elisa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Marcos, Rocio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Readily Available Ruthenium Complex for Efficient Dynamic Kinetic Resolution of Aromatic alpha-Hydroxy Ketones2014In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 16, no 8, p. 2256-2259Article in journal (Refereed)
    Abstract [en]

    A ruthenium complex formed from commercially available [Ru(p-cymene)Cl-2](2) and 1,4-bis(diphenylphosphino)butane catalyzes the racemization of aromatic alpha-hydroxy ketones very efficiently at room temperature. The racemization is fully compatible with a kinetic resolution catalyzed by a lipase from Pseudomonas stutzeri. This is the first example of dynamic kinetic resolution of alpha-hydroxy ketones at ambient temperature in which the metal and enzyme catalysts work in concert in one pot at room temperature to give quantitative yields of esters of alpha-hydroxy ketones with very high enantioselectivity.

  • 20.
    Ahlford, Katrin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric transfer hydrogenation of ketones: Catalyst development and mechanistic investigation2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The development of ligands derived from natural amino acids for asymmetric transfer hydrogenation (ATH) of prochiral ketones is described herein. In the first part, reductions performed in alcoholic media are examined, where it is found that amino acid-derived hydroxamic acids and thioamides, respectively, are simple and versatile ligands that in combination with [RhCp*Cl2]2 efficiently catalyze this particular transformation. Selectivities up to 97% ee of the corresponding secondary alcohols are obtained, and it is furthermore observed that the two different ligand classes, albeit based on the same amino acid scaffold, give rise to products of opposite configuration.

    The highly interesting enantioswitchable nature of the two abovementioned catalysts is studied in detail by mechanistic investigations. A structure/activity correlation analysis is performed, which reveals that the diverse behavior of the catalysts arise from different interactions between the ligands and the metal. Kinetic studies furthermore stress the catalyst divergence, since a difference in the rate determining step is established from initial rate measurements. In addition, rate constants are determined for each step of the overall reduction process.

    In the last part, catalyst development for ATH executed in water is discussed. The applicability of hydroxamic acid ligands is further extended, and catalysts based on these compounds are found to be efficient and compatible with aqueous conditions. The structurally even simpler amino acid amide is also evaluated as a ligand, and selectivities up to 90% ee are obtained in the reduction of a number of aryl alkyl ketones. The very challenging reduction of dialkyl ketones is moreover examined in the Rh-catalyzed aqueous ATH, where a modified surfactant-resembling sulfonylated diamine is used as ligand, and the reaction is carried out in the presence of SDS-micelles. A positive effect is to some extent found on the catalyst performance upon addition of phase-transfer components, especially regarding the catalytic activity in the reduction of more hydrophobic substrates.

  • 21.
    Ahlford, Katrin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalyzed asymmetric transfer hydrogenation of ketones. Ligand development and mechanistic investigation2008Licentiate thesis, comprehensive summary (Other academic)
  • 22.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Amino acid-derived amides and hydroxamic acids as ligands for asymmetric transfer hydrogenation in aqueous media2011In: Catalysis communications, ISSN 1566-7367, E-ISSN 1873-3905, Vol. 12, no 12, p. 1118-1121Article in journal (Refereed)
    Abstract [en]

    Amides and hydroxamic acids derived from α-amino acids were evaluated as ligands in combination with rhodium and iridium half-sandwich complexes in asymmetric transfer hydrogenation (ATH) of ketones. The reactions were performed in aqueous media using lithium formate as hydride source. The catalyst systems turned out to be highly efficient and ees up to 90% were obtained.

  • 23.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Physical, Inorganic and Structural Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Amino Acid Derived Rhodium Complexes: On the Origin of Enantioselectivity and Enantioswitchability2009In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 15, no 42, p. 11197-11209Article in journal (Refereed)
    Abstract [en]

    Amino acid based thioamides, hydroxamic acids, and hydrazides have been evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. Catalysts containing thioamide ligands derived from L-valine were found to selectively generate the product with an R configuration (95 % ee), whereas the corresponding L-valine-based hydroxamic acids or hydrazides facilitated the formation of the (S)-alcohols (97 and 91 % ee, respectively). The catalytic reduction was examined by performing a structure–activity correlation investigation with differently functionalized or substituted ligands and the results obtained indicate that the major difference between the thioamide and hydroxamic acid based catalysts is the coordination mode of the ligands. Kinetic experiments were performed and the rate constants for the reduction reactions were determined by using rhodium–arene catalysts derived from amino acid thioamide and hydroxamic acid ligands. The data obtained show that the thioamide-based catalyst systems demonstrate a pseudo-first-order dependence on the substrate, whereas pseudo-zero-order dependence was observed for the hydroxamic acid containing catalysts. Furthermore, the kinetic experiments revealed that the rate-limiting steps of the two catalytic systems differ. From the data obtained in the structure–activity correlation investigation and along with the kinetic investigation it was concluded that the enantioswitchable nature of the catalysts studied originates from different ligand coordination, which affects the rate-limiting step of the catalytic reduction reaction.

  • 24.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Asymmetric transfer hydrogenation of ketones catalyzed by amino acid derived rhodium complexes: on the origin of enantioselectivity and enantioswitchability: Corrigendum to vol 15(2009) 42, pp. 11197-2010In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 16, no 35, p. 10610-10610Article in journal (Refereed)
  • 25.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lind, Jesper
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalyzed asymmetric transfer hydrogenation of alkyl and aryl ketones in aqueous media2008In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 10, no 8, p. 832-835Article in journal (Refereed)
    Abstract [en]

    A novel lipophilic rhodium catalyst was evaluated in the enantioselective transfer hydrogenation of ketones in water using sodium formate as the hydride donor, and in the presence of sodium docecylsulfonate. Alkyl alkyl ketones were reduced in good yields and in moderate to good enantioselectivities, and the reduction of aryl alkyl ketones proceeded with excellent enantioselectivity (up to 97% ee).

  • 26.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Livendahl, Madeleine
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fine-tuning catalytic activity and selectivity-[Rh(amino acid thioamide)] complexes for efficient ketone reduction2009In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 50, no 46, p. 6321-6324Article in journal (Refereed)
    Abstract [en]

    Amino acid-derived thioamides are prepared and evaluated as ligands in the rhodium-catalyzed asymmetric transfer hydrogenation of ketones in 2-propanol. It is found that increasing the steric bulk at the C-terminus of the ligand had a positive impact on both activity and selectivity in the reduction reaction. In order to find the optimum catalyst, a study is performed on a series of thioamide ligands having substituents of varying size.

  • 27.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ryberg, Per
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordin, Mikael
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mechanistic investigation of enantioswitchable catalysts for asymmetric transfer hydrogenation2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco , CA, United States, March 21-25, 2010, Washington: American Chemical Society , 2010Conference paper (Other academic)
  • 28.
    Ahlford, Katrin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zaitsev, Alexey B.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ekström, Jesper
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Adolfsson, Hans
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Simple and Efficient Catalyst System for the Asymmetric Transfer Hydrogenation of Ketones2007In: Synlett: Accounts and Rapid Communications in Synthetic Organic Chemistry, ISSN 0936-5214, E-ISSN 1437-2096, no 16, p. 2541-2544Article in journal (Refereed)
  • 29.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed enol formation from allylic alcohols: Isomerisation, C−C and C−F bond formations 2011Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis describes the isomerisation of allylic alcohols into enols and enolates catalysed by transition metal complexes. The transformation has been used to prepare both unsubstituted and α-substituted carbonyl compounds. Significant attention has been given to the mechanistic aspects of the reactions.

    In the first part of this thesis, an environmentally benign procedure for the redox isomerisation of allylic alcohols into ketones is described. The reaction takes place in water and at room temperature using a cationic rhodium complex in combination with water-soluble phosphines. A variety of allylic alcohols could be isomerised in high yields using this procedure.

    The second part describes the combination of an allylic alcohol isomerisation with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosyl imines forming aldol and Mannich-type products. In addition, homoallylic and bishomoallylic alcohols were for the first time isomerised into the corresponding enolates and coupled using this methodology.

    In the third part of this thesis, the isomerisation of allylic alcohols was coupled with a C−F bond formation using an iridium complex and electrophilic fluorinating reagents. This novel transformation was used to convert allylic alcohols into single regioisomers of α-fluoroketones. The reaction is tolerant to air and water and takes place at room temperature.

    All of the reactions described take place under mild conditions, are operationally simple, and utilise catalysts formed in situ from commercially available metal complexes and ligands.

  • 30.
    Ahlsten, Nanna
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Transition metal-catalysed isomerisation of allylic alcohols: Applications to C−C, C−F and C−Cl bond formation2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The focus of this thesis has been to develop selective and atom-economical methods for carbon-carbon and carbon-heteroatom bond formation, and to some extent improve on existing findings in this area. More specifically, methods for the catalytic generation of enolates from allylic alcohols and their in situ functionalisation with electrophilic reagents are described.  

    In the first part of this thesis, a method for the Rh-catalysed redox-isomerisation of allylic alcohols into carbonyl compounds under environmentally benign conditions is described. The reaction takes place at room temperature, in the absence of acids or bases, using water as the only solvent, and it is applicable to both primary and secondary allylic alcohols.

    The second part describes the combination of an isomerisation reaction of allylic alcohols with a C−C bond formation, catalysed by a rhodium complex. In this way, allylic alcohols were coupled with aldehydes and N-tosylimines to give aldol and Mannich-type products. In addition to allylic alcohols, homoallylic and bishomoallylic alcohols could be used as enolate precursors, and this is the first report where the latter two substrate types have been used in such a reaction.       

    In the remaining parts of the thesis, an iridium-catalysed isomerisation of allylic alcohols has been combined with an electrophilic halogenation step to provide a conceptually new method for the synthesis of α-halogenated carbonyl compounds. In this way, α-fluoro and α-chloroketones have been synthesised as single constitutional isomers, with the regiochemistry of the final products determined by the position of the double bond in the allylic alcohols. The reactions are tolerant to air, run in water-organic solvent mixtures, and proceed at room temperature.

  • 31.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Agrawal, Santosh
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A facile synthesis of α-fluoro ketones catalyzed by [Cp*IrCl2](2)2011In: Synthesis (Stuttgart), ISSN 0039-7881, E-ISSN 1437-210X, no 16, p. 2600-2608Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols are isomerized into enolates (enols) by [Cp*IrCl2]2. The enolates react with Selectfluor present in the reaction media. This method produces α-fluoro ketones as single constitutional isomers in high yields.

  • 32.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bartoszewicz, Agnieszka
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Allylic alcohols as synthetic enolate equivalents: Isomerisation and tandem reactions catalysed by transition metal complexes2012In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 41, no 6, p. 1660-1670Article in journal (Refereed)
    Abstract [en]

    Allylic alcohols can be isomerised into carbonyl compounds by transition metal complexes. In the last few years, catalyst design and development have resulted in highly efficient isomerisations under mild reaction conditions, including enantioselective versions. In addition, the isomerisation of allylic alcohols has been combined with C-C bond forming reactions when electrophiles such as aldehydes or imines were present in the reaction mixture. Also, C-F bonds can be formed when electrophilic fluorinating reagents are used. Thus, allylic alcohols can be treated as latent enol(ate)s. In this article, we highlight the latest developments concerning the isomerisation of allylic alcohols into carbonyl compounds, focusing in particular on tandem isomerisation/C-C or C-heteroatom bond formation processes. Significant attention is given to the mechanistic aspects of the reactions.

  • 33.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo Gomez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Iridium-Catalyzed 1,3-Hydrogen Shift/Chlorination of Allylic Alcohols2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 24, p. 6273-6276Article in journal (Refereed)
  • 34.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bermejo-Gómez, Antonio
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis of α-chlorinated ketones and aldehydes: Iridium-catalyzed tandem 1,3-H shift/chlorination of allylic alcoholsManuscript (preprint) (Other academic)
  • 35.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lundberg, Helena
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed isomerisation of allylic alcohols in water at ambient temperature2010In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 12, no 9, p. 1628-1633Article in journal (Refereed)
    Abstract [en]

    An environmentally benign method for the transformation of allylic alcohols into carbonyl compounds is described. Using [Rh(COD(CH3CN)(2)]BF4 (2) in combination with 1,3,5-triaza-7-phosphaadamantane (PTA, 1) as the catalytic system in water results in a very fast redox isomerisation of a variety of secondary allylic alcohols at ambient temperature. Also, some primary allylic alcohols can be isomerised into the corresponding aldehydes. The active complex, which in some cases can be used in catalyst loadings as low as 0.5 mol%, is formed in situ from commercially available reagents. Based on deuterium labelling studies, a tentative mechanism involving metal-enone intermediates is presented.

  • 36.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martin-Matute, Belen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ir-catalysed formation of C-F bonds. From allylic alcohols to α-fluoroketones2011In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 47, no 29, p. 8331-8333Article in journal (Refereed)
    Abstract [en]

    A novel iridium-catalysed tandem isomerisation/C-F bond formation from allylic alcohols and Selectfluor® to prepare α-fluorinated ketones as single constitutional isomers is reported.

  • 37.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines2010In: Abstracts of Papers, 239th ACS National Meeting, San Francisco, CA, United States, March 21-25, 2010, American Chemical Society , 2010Conference paper (Other academic)
  • 38.
    Ahlsten, Nanna
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Martín-Matute, Belén
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Rhodium-catalysed coupling of allylic, homoallylic, and bishomoallylic alcohols with aldehydes and N-tosylimines: insights into the mechanism2009In: Advanced Synthesis and Catalysis, ISSN 1615-4150, E-ISSN 1615-4169, Vol. 351, no 16, p. 2657-2666Article in journal (Refereed)
    Abstract [en]

    The isomerisation of alkenols followed by reaction with aldehydes or N-tosylimines catalysed by rhodium complexes has been studied. The catalytically active rhodium complex is formed in situ from commercially available (cyclooctadiene)rhodium(l) chloride dimer [Rh(COD)Cl](2). The tandem process affords aldol and Mannich-type products in excellent yields. The key to the success of the coupling reaction is the activation of the catalysts by reaction with postassium tert-butoxide (t-BuOK), which promotes a catalytic cycle via alkoxides rather than rhodium hydrides. This mechanism minimises the formation of unwanted by-products. The mechanism has been studied by (1)H NMR spectroscopy and deuterium labelling experiments.

  • 39. Ahmad, Anees
    et al.
    Scarassati, Paulo
    Jalalian, Nazli
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Universidade de São Paulo, Brazil.
    Olofsson, Berit
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Silva, Luiz F., Jr.
    Oxidative rearrangement of alkenes using in situ generated hypervalent iodine(III)2013In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 54, no 43, p. 5818-5820Article in journal (Refereed)
    Abstract [en]

    A novel protocol for the oxidative rearrangement of alkenes using in situ generated hypervalent iodine(III) was developed. This approach uses inexpensive, readily available, and stable chemicals (PhI, mCPBA, and TsOH) giving rearrangement products in yields comparable to those obtained using the more expensive commercially available [hydroxy(tosyloxy)iodo]benzene [HTIB or Koser's reagent]. Additionally, an alternative protocol for the synthesis of 1-methyl-2-tetralone through the one-step epoxidation/rearrangement of 4-methyl-1,2-dihydronaphthalene using mCPBA and TsOH was developed.

  • 40. Ai, Yue-Jie
    et al.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Shi-Lu
    Hua, Wei-Jie
    Fang, Wei-Hai
    Luo, Yi
    Repair of DNA Dewar Photoproduct to (6-4) Photoproduct in (6-4) Photolyase2011In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 115, no 37, p. 10976-10982Article in journal (Refereed)
    Abstract [en]

    Dewar photoproduct (Dewar PP) is the valence isomer of (6-4) photoproduct ((6-4)PP) in photodamaged DNA. Compared to the extensive studied CPD photoproducts, the underlying repair mechanisms for the (6-4)PP, and especially for the Dewar PP, are not well-established to date. In this paper, the repair mechanism of DNA Dewar photoproduct T(dew)C in (6-4) photolyase was elucidated using hybrid density functional theory. Our results showed that, during the repair process, the T(dew)C has to isomerize to T(6-4)C photolesion first via direct C6'-N3' bond cleavage facilitated by electron injection. This isomerization mechanism is energetically much more efficient than other possible rearrangement pathways. The calculations provide a theoretical interpretation to recent experimental observations.

  • 41. Ai, Yue-Jie
    et al.
    Liao, Rong-zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Shu-feng
    Luo, Yi
    Fang, Wei-Hai
    Theoretical Studies on Photoisomerizations of (6-4) and Dewar Photolesions in DNA2010In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 114, no 44, p. 14096-14102Article in journal (Refereed)
    Abstract [en]

    The (6-4) photoproduct ((6-4) PP) is one of the main lesions in UV-induced DNA damage. The (6-4) PP and its valence isomer Dewar photoproduct (Dewar PP) can have a great threat of mutation and cancer but gained much less attention to date. In this study, with density functional theory (DFT) and the complete active space self-consistent field (CASSCF) methods, the photoisomerization processes between the (6-4) PP and the Dewar PP in the gas phase, the aqueous solution, and the photolyase have been carefully examined. Noticeably, the solvent effect is treated with the CASPT2//CASSCF/Amber (QM/MM) method. Our calculations show that the conical intersection (Cl) points play a crucial role in the photoisomerization reaction between the (6-4) PP and the Dewar PP in the gas and the aqueous solution. The ultrafast internal conversion between the S-2 ((1)pi pi*) and the So states via a distorted intersection point is found to be responsible for the formation of the Dewar PP lesion at 313 nm, as observed experimentally. For the reversed isomeric process, two channels involving the "dark" excited states have been identified. In addition to the above passages, in the photolyase, a new electron-injection isomerization process as an efficient way for the photorepair of the Dewar PP is revealed.

  • 42. Ai, Yue-jie
    et al.
    Tian, Guangjun
    Liao, Rong-zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zhang, Qiong
    Fang, Wei-hai
    Luo, Yi
    Intrinsic Property of Flavin Mononucleotide Controls its Optical Spectra in Three Redox States2011In: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 12, no 16, p. 2899-2902Article in journal (Refereed)
  • 43.
    Akhtar, Tashfeen
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Investigations into the synthesis of amine-linked neodisaccharides2007In: Tetrahedron Letters, ISSN 0040-4039, Vol. 48, p. 8673-8677Article in journal (Refereed)
  • 44.
    Akhtar, Tashfeen
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Department of Physical, Inorganic and Structural Chemistry.
    Cumpstey, Ian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Unusual synthesis of carbohydrate sec-sec ether-linked pseudodisaccharides2008In: Carbohydrate Research, ISSN 0008-6215, Vol. 343, no 12, p. 2094-2100Article in journal (Refereed)
  • 45.
    Akkarasamiyo, Sunisa
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sawadjoon, Supaporn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Orthaber, Andreas
    Samec, Joseph S. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tsuji-Trost Reaction of Non-Derivatized Allylic Alcohols2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 14, p. 3488-3498Article in journal (Refereed)
    Abstract [en]

    Palladium-catalyzed allylic substitution of non-derivatized enantioenriched allylic alcohols with a variety of uncharged N-, S-, C- and O-centered nucleophiles using a bidentate BiPhePhos ligand is described. A remarkable effect of the counter ion (X) of the XPd[kappa(2)-BiPhePhos][kappa(3)-C3H5] was observed. When ClPd[kappa(2)-BiPhePhos][eta(3)-C3H5] (complexI) was used as catalyst, non-reproducible results were obtained. Study of the complex by X-ray crystallography, (PNMR)-P-31 spectroscopy, and ESI-MS showed that a decomposition occurred where one of the phosphite ligands was oxidized to the corresponding phosphate, generating ClPd[kappa(1)-BiPhePhosphite-phosphate][eta(3)-C3H5] species (complexII). When the chloride was exchanged to the weaker coordinating OTf- counter ion the more stable Pd[kappa(2)-BiPhePhos][eta(3)-C3H5](+)+[OTf] (-) (complexIII) was formed. ComplexIII performed better and gave higher enantiospecificities in the substitution reactions. ComplexIII was evaluated in Tsuji-Trost reactions of stereogenic non-derivatized allylic alcohols. The desired products were obtained in good to excellent yields (71-98%) and enantiospecificities (73-99%) for both inter- and intramolecular substitution reactions with only water generated as a by-product. The methodology was applied to key steps in total synthesis of (S)-cuspareine and (+)-lentiginosine. A reaction mechanism involving a palladium hydride as a key intermediate in the activation of the hydroxyl group is proposed in the overall transformation.

  • 46.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Regio- and Stereoselective Reactions for the Synthesis of Allylic and Homoallylic Compounds2015Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis is focused on two main areas of organic synthesis, palladium-catalyzed functionalization of alkenes and allylic alcohols, as well as development of new allylboration reactions.

    We have developed a palladium-catalyzed selective allylic trifluoroacetoxylation reaction based on C−H functionalization. Allylic trifluoroacetates were synthesized from functionalized olefins under oxidative conditions. The reactions proceed under mild conditions with a high level of diastereoselectivity. Mechanistic studies of the allylic C−H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium(IV) intermediate.

    Palladium-catalyzed regio- and stereoselective synthesis of allylboronic acids from allylic alcohols has been demonstrated. Diboronic acid B2(OH)4 was used as the boron source in this process.

    The reactivity of the allylboronic acids were studied in three types of allylboration reactions: allylboration of ketones, imines and acyl hydrazones. All three processes are conducted under mild conditions without any additives. The reactions proceeded with remarkably high regio- and stereoselectivity.

    An asymmetric version of the allylboration of ketones was also developed. In this process chiral BINOL derivatives were used as catalysts. The reaction using γ-disubstituted allylboronic acids and various aromatic and aliphatic ketones afforded homoallylic alcohols bearing two adjacent quaternary stereocenters with excellent regio-, diastereo- and enantioselectivity (up to 97:3 er) in high yield. The stereoselectivity in the allylboration reactions could be rationalized on the basis of the Zimmerman-Traxler TS model.

  • 47.
    Alam, Rauful
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Palladium-catalyzed Allylic C-H and C-OH Functionalization. Reactions of the Obtained Allylboronic Acids2014Licentiate thesis, monograph (Other academic)
    Abstract [en]

    This thesis is focused on the studies of two major transformations. The first transformation deals with the development of palladium-catalyzed selective allylic trifluoroacetoxylation reactions based on C-H functionalization, whereas the second comprises the synthesis and isolation of allylboronic acids using diboronic acid B2(OH)4 as boron source. Both reactions proceed with a very high regio- and stereoselectivity. The mechanistic studies of the allylic C-H trifluoroacetoxylation indicate that the reaction proceeds via (η3-allyl)palladium intermediate.

    The reactivity of the allylboronic acids was studied with ketone and imine substrates. Unlikeother boronates (such as allyl-Bpin derivatives), allylboronic acids react with ketones and imines without any additives under neutral and mild conditions (typically at room temperature). The regio- and stereoselectivity of this reaction is remarkably high. Using functionalized allylboronic acids (prepared in the above mentioned Pd-catalyzed reactions) homoallylic alcohols and amines with adjacent tertiary and quaternary centers could be obtained with high selectivity. Interestingly, both the ketones and the imines reacted with anti-stereoselectivity. This was surprising for the imines. Our mechanistic study has shown that the acyclic aldimines undergo cis/trans isomerization prior to the allylation reaction.

  • 48.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Arindam
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Huang, Genping
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Stereoselective allylboration of imines and indoles under mild conditions. An in situ E/Z isomerization of imines by allylboroxines2014In: Chemical Science, ISSN 2041-6520, E-ISSN 2041-6539, Vol. 5, no 7, p. 2732-2738Article in journal (Refereed)
    Abstract [en]

    Direct allylboration of various acyclic and cyclic aldimine, ketimine and indole substrates was performed using allylboronic acids. The reaction proceeds with very high anti-stereoselectivity for both E and Z imines. The allylboroxines formed by dehydration of allylboronic acids have a dual effect: promoting E/Z isomerization of aldimines and triggering the allylation by efficient electron withdrawal from the imine substrate.

  • 49.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Diner, Colin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Jonker, Sybrand
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Szabó, Kálmán J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Asymmetric Allylboration of Indoles and Dihydroisoquinolines with Allylboronic Acids: Stereodivergent Synthesis of up to Three Contiguous Stereocenters2016In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 55, no 46, p. 14417-14421Article in journal (Refereed)
    Abstract [en]

    The catalytic asymmetric allylboration of cyclic imines with gamma,gamma-disubstituted allylboronic acids provides products with adjacent stereocenters in high yield and stereoselectivity. Various electrophiles, including 3,4-dihydroisoquinolines and indoles, were prenylated in a fully stereodivergent fashion by switching the E/Z geometry of the allylboronate and/or the enantiomer of the BINOL catalyst. 3-Methylindole provided products with three adjacent stereocenters with high stereoselectivity in one synthetic operation.

  • 50.
    Alam, Rauful
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mihai, Raducan
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Eriksson, Lars
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.
    Szabo, Kalman J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Selective Formation of Adjacent Stereocenters by Allylboration of Ketones under Mild Neutral Conditions2013In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 15, no 10, p. 2546-2549Article in journal (Refereed)
    Abstract [en]

    Allylboronic acids readily react with a broad variety of ketones, affording homoallylic alcohols with adjacent quaternary and tertiary stereocenters. The reaction proceeds with very high anti stereoselectivity even if the substituents of the keto group have a similar size. a-Keto acids react with syn stereoselectivity probably due to the formation of acyl boronate intermediates. The allylation reactions proceed without added acids/bases under mild conditions. Because of this, many functionalities are tolerated even with in situ generated allylboronic acids.

1234567 1 - 50 of 1624
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf