Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Wang, Zhenyu
    Linköping University, Department of Electrical Engineering, Computer Engineering.
    A Digits-Recognition Convolutional Neural Network on FPGA2019Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    A convolutional neural network (CNN) is a deep learning framework that is widely used in computer vision. A CNN extracts important features of input images by perform- ing convolution and reduces the parameters in the network by applying pooling operation. CNNs are usually implemented with programming languages and run on central process- ing units (CPUs) and graphics processing units (GPUs). However in recent years, research has been conducted to implement CNNs on field-programmable gate array (FPGA).

    The objective of this thesis is to implement a CNN on an FPGA with few hardware resources and low power consumption. The CNN we implement is for digits recognition. The input of this CNN is an image of a single digit. The CNN makes inference on what number it is on that image. The performance and power consumption of the FPGA is compared with that of a CPU and a GPU.

    The results show that our FPGA implementation has better performance than the CPU and the GPU, with respect to runtime, power consumption, and power efficiency.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf