Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Interactive Perception: From Scenes to Objects2012Doctoral thesis, monograph (Other academic)
    Abstract [en]

    This thesis builds on the observation that robots, like humans, do not have enough experience to handle all situations from the start. Therefore they need tools to cope with new situations, unknown scenes and unknown objects. In particular, this thesis addresses objects. How can a robot realize what objects are if it looks at a scene and has no knowledge about objects? How can it recover from situations where its hypotheses about what it sees are wrong? Even if it has built up experience in form of learned objects, there will be situations where it will be uncertain or mistaken, and will therefore still need the ability to correct errors. Much of our daily lives involves interactions with objects, and the same will be true robots existing among us. Apart from being able to identify individual objects, the robot will therefore need to manipulate them.

    Throughout the thesis, different aspects of how to deal with these questions is addressed. The focus is on the problem of a robot automatically partitioning a scene into its constituting objects. It is assumed that the robot does not know about specific objects, and is therefore considered inexperienced. Instead a method is proposed that generates object hypotheses given visual input, and then enables the robot to recover from erroneous hypotheses. This is done by the robot drawing from a human's experience, as well as by enabling it to interact with the scene itself and monitoring if the observed changes are in line with its current beliefs about the scene's structure.

    Furthermore, the task of object manipulation for unknown objects is explored. This is also used as a motivation why the scene partitioning problem is essential to solve. Finally aspects of monitoring the outcome of a manipulation is investigated by observing the evolution of flexible objects in both static and dynamic scenes. All methods that were developed for this thesis have been tested and evaluated on real robotic platforms. These evaluations show the importance of having a system capable of recovering from errors and that the robot can take advantage of human experience using just simple commands.

  • 2.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Modeling of Natural Human – Robot Encounters2008Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
  • 3.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Björkman, Mårten
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bohg, Jeannette
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Roberson-Johnson, Matthew
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kootstra, Gert
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Active Scene Analysis2010Conference paper (Refereed)
  • 4.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Björkman, Mårten
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Generating Object Hypotheses in Natural Scenes through Human-Robot Interaction2011In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS / [ed] Amato, Nancy M., San Francisco: IEEE , 2011, p. 827-833Conference paper (Refereed)
    Abstract [en]

    We propose a method for interactive modeling ofobjects and object relations based on real-time segmentation ofvideo sequences. In interaction with a human, the robot canperform multi-object segmentation through principled model-ing of physical constraints. The key contribution is an efficientmulti-labeling framework, that allows object modeling anddisambiguation in natural scenes. Object modeling and labelingis done in a real-time, to which hypotheses and constraintsdenoting relations between objects can be added incrementally.Through instructions such as key presses or spoken words, ascene can be segmented in regions corresponding to multiplephysical objects. The approach solves some of the difficultproblems related to disambiguation of objects merged due totheir direct physical contact. Results show that even a limited setof simple interactions with a human operator can substantiallyimprove segmentation results.

  • 5.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Bohg, Jeannette
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Integration of Visual Cues for Robotic Grasping2009In: COMPUTER VISION SYSTEMS, PROCEEDINGS / [ed] Fritz M, Schiele B, Piater JH, Berlin: Springer-Verlag Berlin , 2009, Vol. 5815, p. 245-254Conference paper (Refereed)
    Abstract [en]

    In this paper, we propose a method that generates grasping actions for novel objects based on visual input from a stereo camera. We are integrating two methods that are advantageous either in predicting how to grasp an object or where to apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary grasping actions can be associated to parts of this model. The second method predicts grasping points in a 2D contour image of an object. By integrating the information from the two approaches, we can generate a sparse set, of full grasp configurations that are of a good quality. We demonstrate our approach integrated in a vision system for complex shaped objects as well as in cluttered scenes.

  • 6.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ek, Carl Henrik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Björkman, Mårten
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Scene Understanding through Autonomous Interactive Perception2011In: Computer Vision Systems: Lecture Notes in Computer Science / [ed] Crowley James L., Draper Bruce, Thonnat Monique, Springer Verlag , 2011, p. 153-162Conference paper (Refereed)
    Abstract [en]

    We propose a framework for detecting, extracting and mod-eling objects in natural scenes from multi-modal data. Our frameworkis iterative, exploiting different hypotheses in a complementary manner.We employ the framework in realistic scenarios, based on visual appear-ance and depth information. Using a robotic manipulator that interactswith the scene, object hypotheses generated using appearance informa-tion are confirmed through pushing. The framework is iterative, eachgenerated hypothesis is feeding into the subsequent one, continuously re-fining the predictions about the scene. We show results that demonstratethe synergic effect of applying multiple hypotheses for real-world sceneunderstanding. The method is efficient and performs in real-time.

  • 7.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ek, Carl Henrik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Yamakawa, Yuji
    Senoo, Taku
    Ishikawa, Masatoshi
    On-line learning of temporal state models for flexible objects2012In: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE , 2012, p. 712-718Conference paper (Refereed)
    Abstract [en]

    State estimation and control are intimately related processes in robot handling of flexible and articulated objects. While for rigid objects, we can generate a CAD model before-hand and a state estimation boils down to estimation of pose or velocity of the object, in case of flexible and articulated objects, such as a cloth, the representation of the object's state is heavily dependent on the task and execution. For example, when folding a cloth, the representation will mainly depend on the way the folding is executed.

  • 8.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kanda, Takayuki
    Miyashita, Takahiro
    Ishiguro, Hiroshi
    Hagita, Norihiro
    Modeling of Natural Human-Robot Encounters2008In: 2008 IEEE/RSJ International Conference On Robots And Intelligent Systems, Vols 1-3, Conference Proceedings / [ed] Chatila, R; Kelly, A; Merlet, JP, 2008, p. 2623-2629Conference paper (Refereed)
    Abstract [en]

    For a person to feel comfortable when approaching a robot it is necessary for the robot to behave in an expected way. People's behavior around a robot not being aware of them were observed during a preliminary experiment. Based on those observations people were classified into four groups depending on their interest in the robot. People were tracked with a laser range finder based system, and their positions, directions and velocities were estimated. A second classification based on that information was made and the relation between the two classifications were mapped. Different actions were created for the robot to be able to react naturally to different human behaviors. In this paper we evaluate three different robot behaviors with respect to how natural they appear. One behavior that actively tries to engage people, one that passively indicates that people have been noticed and a third that makes random gestures. During an experiment test subjects were instructed to act according to the groups from the classification based on interest, and the robot's performance with regard to naturalness was evaluated. Both first and third person evaluation made clear that the active and passive behavior were considered equally natural, while a robot randomly making gestures was considered much less natural.

  • 9.
    Bergström, Niklas
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Yamakawa, Yuji
    Tokyo University.
    Senoo, Taku
    Tokyo University.
    Ek, Carl Henrik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Ishikawa, Masatoshi
    Tokyo University.
    State Recognition of Deformable Objects Using Shape Context2011In: The 29th Annual Conference of the Robotics Society of Japan, 2011Conference paper (Other academic)
  • 10.
    Bohg, Jeannette
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Björkman, Mårten
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Acting and Interacting in the Real World2011Conference paper (Refereed)
  • 11.
    Bohg, Jeannette
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Johnson-Roberson, Matthew
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Leon, Beatriz
    Universitat Jaume I, Castellon, Spain.
    Felip, Javier
    Universitat Jaume I, Castellon, Spain.
    Gratal, Xavi
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Morales, Antonio
    Universitat Jaume I, Castellon, Spain.
    Mind the Gap - Robotic Grasping under Incomplete Observation2011In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, May 9-13, 2011, New York: IEEE , 2011, p. 686-693Conference paper (Refereed)
    Abstract [en]

    We consider the problem of grasp and manipulation planning when the state of the world is only partially observable. Specifically, we address the task of picking up unknown objects from a table top. The proposed approach to object shape prediction aims at closing the knowledge gaps in the robot's understanding of the world. A completed state estimate of the environment can then be provided to a simulator in which stable grasps and collision-free movements are planned. The proposed approach is based on the observation that many objects commonly in use in a service robotic scenario possess symmetries. We search for the optimal parameters of these symmetries given visibility constraints. Once found, the point cloud is completed and a surface mesh reconstructed. Quantitative experiments show that the predictions are valid approximations of the real object shape. By demonstrating the approach on two very different robotic platforms its generality is emphasized.

  • 12.
    Kootstra, Gert
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Fast and Automatic Detection and Segmentation of Unknown Objects2010In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE , 2010, p. 442-447Conference paper (Refereed)
    Abstract [en]

    This paper focuses on the fast and automatic detection and segmentation of unknown objects in unknown environments. Many existing object detection and segmentation methods assume prior knowledge about the object or human interference. However, an autonomous system operating in the real world will often be confronted with previously unseen objects. To solve this problem, we propose a segmentation approach named Automatic Detection And Segmentation (ADAS). For the detection of objects, we use symmetry, one of the Gestalt principles for figure-ground segregation to detect salient objects in a scene. From the initial seed, the object is segmented by iteratively applying graph cuts. We base the segmentation on both 2D and 3D cues: color, depth, and plane information. Instead of using a standard grid-based representation of the image, we use super pixels. Besides being a more natural representation, the use of super pixels greatly improves the processing time of the graph cuts, and provides more noise-robust color and depth information. The results show that both the object-detection as well as the object-segmentation method are successful and outperform existing methods.

  • 13.
    Kootstra, Gert
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Gestalt Principles for Attention and Segmentation in Natural and Artificial Vision Systems2011In: Semantic Perception, Mapping and Exploration (SPME), ICRA 2011 Workshop, eSMCs , 2011Conference paper (Refereed)
    Abstract [en]

    Gestalt psychology studies how the human visual system organizes the complex visual input into unitary elements. In this paper we show how the Gestalt principles for perceptual grouping and for figure-ground segregation can be used in computer vision. A number of studies will be shown that demonstrate the applicability of Gestalt principles for the prediction of human visual attention and for the automatic detection and segmentation of unknown objects by a robotic system.

  • 14.
    Kootstra, Gert
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS. KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP. KTH, School of Computer Science and Communication (CSC), Centres, Centre for Autonomous Systems, CAS.
    Using Symmetry to Select Fixation Points for Segmentation2010In: Proceedings of the 20th International Conference on Pattern Recognition, IEEE , 2010, p. 3894-3897Conference paper (Refereed)
    Abstract [en]

    For the interpretation of a visual scene, it is important for a robotic system to pay attention to the objects in the scene and segment them from their background. We focus on the segmentation of previously unseen objects in unknown scenes. The attention model therefore needs to be bottom-up and context-free. In this paper, we propose the use of symmetry, one of the Gestalt principles for figure-ground segregation, to guide the robot’s attention. We show that our symmetry-saliency model outperforms the contrast-saliency model, proposed in. The symmetry model performs better in finding the objects of interest and selects a fixation point closer to the center of the object. Moreover, the objects are better segmented from the background when the initial points are selected on the basis of symmetry.

  • 15.
    Luo, Guoliang
    et al.
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Bergström, Niklas
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Ek, Carl Henrik
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Kragic, Danica
    KTH, School of Computer Science and Communication (CSC), Computer Vision and Active Perception, CVAP.
    Representing actions with Kernels2011In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, p. 2028-2035Conference paper (Refereed)
    Abstract [en]

    A long standing research goal is to create robots capable of interacting with humans in dynamic environments.To realise this a robot needs to understand and interpret the underlying meaning and intentions of a human action through a model of its sensory data. The visual domain provides a rich description of the environment and data is readily available in most system through inexpensive cameras. However, such data is very high-dimensional and extremely redundant making modeling challenging.Recently there has been a significant interest in semantic modeling from visual stimuli. Even though results are encouraging available methods are unable to perform robustly in realworld scenarios.In this work we present a system for action modeling from visual data by proposing a new and principled interpretation for representing semantic information. The representation is integrated with a real-time segmentation. The method is robust and flexible making it applicable for modeling in a realistic interaction scenario which demands handling noisy observations and require real-time performance. We provide extensive evaluation and show significant improvements compared to the state-of-the-art.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf