Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jacksén, Johan
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Frisk, Thomas
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Redeby, Theres
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Parmar, Varun
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    van der Wijngaart, Wouter
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Stemme, Göran
    KTH, School of Electrical Engineering (EES), Microsystem Technology.
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system2007In: Electrophoresis, ISSN 0173-0835, E-ISSN 1522-2683, Vol. 28, no 14, p. 2458-2465Article in journal (Refereed)
    Abstract [en]

    In this work, a new technique for off-line hyphenation between CE and MALDI-MS is presented. Two closed fused-silica capillaries were connected via a silicon chip comprising an open microcanal. The EOF in the system was evaluated using mesityloxide or leucine-enkephalin as a sample and with a running buffer that rendered the analyte neutrally charged. Comparison was made between the EOF in a closed system (first capillary solely included in the electrical circuit) and in a closed-open system (first capillary and microcanal included in the electrical circuit). It was concluded that the experimental values of the EOF agreed with the theory. The influence of the capillary outer diameter on the peak dispersion was investigated using a closed-open-closed system (first capillary, microcanal and second capillary included in the electrical circuit). It was clearly seen that a capillary with 375 mu m od induced considerably higher peak dispersion than a 150 mu m od capillary, due to a larger liquid dead volume in the connection between the first capillary outlet and the microcanal. Mass spectrometric analysis has also been performed following CE separation runs in a closed-open-closed system with cytochrome c and lysozyme as model proteins. It was demonstrated that a signal distribution profile of the separated analytes could be recorded over a 30 mm long microcanal.

  • 2.
    Parmar, Varun
    et al.
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    Redeby, Theres
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Emmer, Åsa
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry (closed 20110630).
    Stemme, Göran
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    Van Der Wijngaart, Wouter
    KTH, School of Electrical Engineering (EES), Microsystem Technology (Changed name 20121201).
    ELECTRO-OSMOTIC FLOW THROUGH CLOSED-OPEN-CLOSED MICROCHANNELS: AN APPROACH TO HYPHENATION OF CAPILLARY ELECTROPHORESIS AND MALDI2006In: 19th IEEE International Conference on Micro Electro Mechanical Systems (IEEE MEMS 2006), IEEE conference proceedings, 2006, p. 406-409Conference paper (Refereed)
    Abstract [en]

    We suggest electro-osmotic driven flow (EOF) through closed-open-closed microchannels as a novel approach for spatial sample separation using capillary electrophoresis (CE) prior to matrix assisted laser desorption/ionization mass spectroscopy (MALDI-MS). For this purpose we built a system consisting of the series Coupling of a closed fused silica capillary for separation, a microfabricated open microcanal for future MS detection and a second closed fused silica capillary for downstream liquid collection. This work verifies the EOF transport of a peptide sample in such a system with low dispersion.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf