Endre søk
Begrens søket
1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ban, Yifang
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Hu, Hongtao
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Rangel, Irene
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Fusion of RADARSAT fine-beam SAR and QuickBird data for land-cover mapping and change detection2007Inngår i: Geoinformatics 2007Proceedings of SPIE - The International Society for Optical Engineering: Remotely Sensed Data And Information, Pts 1 And 2 / [ed] Ju, W; Zhao, S, 2007, Vol. 6752, s. H7522-H7522Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The objective of this research is to evaluate multitemporal RADARSAT Fine-Beam C-HH SAR data, QuickBird MS data, and fusion of SAR and MS for urban land-cover mapping and change detection One scene of QuickBird imagery was acquired on July 18, 2002 and five-date RADARSAT fine-beam SAR images were acquired during May to August in 2002. Landsat TM imagery from 1988 was used for change detection. QucikBird images were classified using an object-based and rule-based approach. RADARSAR SAR texture images were classified using a hybrid approach. The results demonstrated that, for identifying 19 land-cover classes, object-based and rule-based classification of Quickbird data yielded an overall classification accuracy of 86.7% (kappa 0.857). For identifying I I land-cover classes, ANN classification of the combined Mean, Standard Deviation and Correlation texture images yielded an overall accuracy: 71.4%, (Kappa: 0.69). The hybrid classification of RADARSAT fine-beam SAR data improved the ANN classification accuracy to 83.56% (kappa: 0.803). Decision level fusion of RADARSAT SAR and QuickBird data improved the classification accuracy of several land cover classes. The post-classification change detection was able to identify the areas of significant change, for example, major new roads, new low-density and high-density, builtup areas and golf courses, even though the change detection results contained large amount of noise due to classification errors of individual images. QuickBrid classification result was able add detailed change information to the major changes identified.

  • 2.
    Ban, Yifang
    et al.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Hu, Hongtao
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Rangel, Irene M.
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik (stängd 20110301).
    Fusion of Quickbird MS and RADARSAT SAR data for urban land-cover mapping: object-based and knowledge-based approach2010Inngår i: International Journal of Remote Sensing, ISSN 0143-1161, E-ISSN 1366-5901, Vol. 31, nr 6, s. 1391-1410Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The objective of this research is to evaluate Quickbird multi-spectral (MS) data, multi-temporal RADARSAT Fine-Beam C-HH synthetic aperture radar (SAR) data and fusion of Quickbird MS and RADARSAT SAR for urban land-use/land-cover mapping. One scene of Quickbird multi-spectral imagery was acquired on 18 July 2002 and five-date RADARSAT fine-beam SAR images were acquired during May to August 2002. Quickbird MS images and RADARSAT SAR data were classified using an object-based and rule-based approach. The results demonstrated that the object-based and knowledge-based approach was effective in extracting urban land-cover classes. For identifying 16 land-cover classes, object-based and rule-based classification of Quickbird MS data yielded an overall classification accuracy of 87.9% (kappa: 0.868). For identifying 11 land-cover classes, object-based and rule-based classification of RADARSAT SAR data yielded an overall accuracy: 86.6% (kappa: 0.852). Decision level fusion of Quickbird classification and RADARSAT SAR classification was able to take advantage of the best classifications of both optical and SAR data, thus significantly improving the classification accuracies of several land-cover classes (25% for pasture, 19% for soybeans, 17% for rapeseeds) even though the overall classification accuracy of 16 land-cover classes increased only slightly to 89.5% (kappa: 0.885).

1 - 2 of 2
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf