Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Pereira, Pedro O.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Boskos, Dimitris
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    A Common Framework for Complete and Incomplete Attitude Synchronization in Networks With Switching Topology2020In: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 65, no 1, p. 271-278Article in journal (Refereed)
    Abstract [en]

    In this paper, we study attitude synchronization for elements in the unit sphere in $\mathbb {R}<^>{\scriptscriptstyle {\scriptscriptstyle {3}}}$ and for elements in the three-dimensional (3-D) rotation group, for a network with switching topology. The agents' angular velocities are assumed to be the control inputs, and a switching control law for each agent is devised that guarantees synchronization, provided that all elements are initially contained in a region, which we identify later in the paper. The control law is decentralized and it does not require a common orientation frame among all agents. We refer to synchronization of unit vectors in $\mathbb {R}<^>{\scriptscriptstyle {3}}$ as incomplete synchronization, and of 3-D rotation matrices as complete synchronization. Our main contribution lies in showing that these two problems can be analyzed under a common framework, where all agents' dynamics are transformed into unit vectors dynamics on a sphere of appropriate dimension.

  • 2.
    Pereira, Pedro O.
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS).
    Dimarogonas, Dimos V.
    KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Decision and Control Systems (Automatic Control).
    Pose and position trajectory tracking for aerial transportation of a rod-like object2019In: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 109, article id 108547Article in journal (Refereed)
    Abstract [en]

    This paper focuses on a pose tracking problem for a system composed of two connected rigid bodies, namely an aerial vehicle - with hovering capabilities - and a rod-like rigid body. The rod-like rigid body has an axis of axial symmetry, and the joint connecting the aerial vehicle and the rod lies along that axis. The aerial vehicle is meant to transport that object, which can swing/slung with respect to the vehicle: we refer to this as generalized slung load transportation because the object being transported is a rod-like object, as opposed to standard slung load transportation where the object is a point mass with no moment of inertia. Given this system, we consider two tracking problems. Firstly, we assume that a torque input on the joint is available, and, for this scenario, we formulate a semi-pose tracking problem, requiring the rod object to track a desired pose trajectory, apart from rotations around its axis of axial symmetry (and thus the semi qualifier). Secondly, we assume that no such torque input is available, and, for this scenario, we formulate a position tracking problem, requiring a specific point along the axis of axial symmetry of the rod object to track a desired position trajectory. Our approach for solving both these problems lies in finding a state and an input transformations, such that the vector field in the new coordinates is of a known form for which controllers are found in the literature, and which we leverage in this paper. Simulations are presented that validate the proposed algorithms. 2019 Elsevier Ltd. All rights reserved.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf