Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Alaniz, Monica
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Belyayev, Serhiy
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Bergman, David
    Casselbrant, Gustav
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Honeth, Mark
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Huang, Jiangwei
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Laukkanen, Mikko
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Michelsen, Jacob
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Pronenko, Vira
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Paulson, Malin
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Schlick, Georg
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Tibert, Gunnar
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Valle, Mario
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    The SQUID sounding rocket experiment2011In: Proceedings of the 20th ESA Symposium on European Rocket and Balloon Programmes and Related Research, European Space Agency, 2011, p. 159-166Conference paper (Refereed)
    Abstract [en]

    The objective of the SQUID project is to develop and in flight verify a miniature version of a wire boom deployment mechanism to be used for electric field measurements in the ionosphere. In February 2011 a small ejectable payload, built by a team of students from The Royal Institute of Technology (KTH), was launched from Esrange on-board the REXUS-10 sounding rocket. The payload separated from the rocket, deployed and retracted the wire booms, landed with a parachute and was subsequently recovered. Here the design of the experiment and post fight analysis are presented.

  • 2. Arriaga, I.
    et al.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Olsson, Göran F
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Alaniz, M.
    Belyayev, Serhiy
    Marusenkov, A.
    SMILE - A miniaturized fluxgate magnetometer2007In: 18TH ESA SYMPOSIUM ON EUROPEAN ROCKET AND BALLOON PROGRAMMES AND RELATED RESEARCH, 2007, Vol. 647, p. 569-572Conference paper (Refereed)
    Abstract [en]

    The SMILE (Small Magnetometer in Low-mass Experiment) instrument is a miniaturized digital fluxgate magnetometer that combines a miniature triaxial sensor with volume compensation with digital data processing implemented in a single FPGA. This report presents first results of numerical simulations of the sensor. We also discuss the digital solutions used in SMILE.

  • 3.
    Belyayev, S. M.
    et al.
    KTH, School of Engineering Sciences (SCI), Mechanics, Structural Mechanics.
    Dudkin, F. L.
    Minimization of nanosatellite low frequency magnetic fields2016In: Review of Scientific Instruments, ISSN 0034-6748, E-ISSN 1089-7623, Vol. 87, no 3, article id 034705Article in journal (Refereed)
    Abstract [en]

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones. (C) 2016 AIP Publishing LLC.

  • 4.
    Belyayev, Serhiy
    et al.
    KTH. Lviv Center of Institute of Space Research, NASU/SSAU, Ukraine.
    Ivchenko, N.
    KTH.
    Effect of second harmonic in pulse-width-modulation-based DAC for feedback of digital fluxgate magnetometer2018In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 29, no 4, article id 045008Article in journal (Refereed)
    Abstract [en]

    Digital fluxgate magnetometers employ processing of the measured pickup signal to produce the value of the compensation current. Using pulse-width modulation with filtering for digital to analog conversion is a convenient approach, but it can introduce an intrinsic source of nonlinearity, which we discuss in this design note. A code shift of one least significant bit changes the second harmonic content of the pulse train, which feeds into the pick-up signal chain despite the heavy filtering. This effect produces a code-dependent nonlinearity. This nonlinearity can be overcome by the specific design of the timing of the pulse train signal. The second harmonic is suppressed if the first and third quarters of the excitation period pulse train are repeated in the second and fourth quarters. We demonstrate this principle on a digital magnetometer, achieving a magnetometer noise level corresponding to that of the sensor itself. 

  • 5.
    Belyayev, Serhiy
    et al.
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics. Lviv Center of Institute of Space Research, NASU/NSAU, S-A Naukova St., Lviv, Ukraine.
    Ivchenko, Nickolay
    KTH, School of Electrical Engineering (EES), Space and Plasma Physics.
    Digital fluxgate magnetometer: design notes2015In: Measurement science and technology, ISSN 0957-0233, E-ISSN 1361-6501, Vol. 26, no 12, article id 125901Article in journal (Refereed)
    Abstract [en]

    We presented an approach to understanding the performance of a fully digital fluxgate magnetometer. All elements of the design are important for the performance of the instrument, and the presence of the digital feed-back loop introduces certain peculiarities affecting the noise and dynamic performance of the instrument. Ultimately, the quantisation noise of the digital to analogue converter is found to dominate the noise of the current design, although noise shaping alleviates its effect to some extent. An example of magnetometer measurements on board a sounding rocket is presented, and ways to further improve the performance of the instrument are discussed.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf