Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Albertsson, Ann-Christine
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Gröning, Mikael
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Chromatographic analysis as a tool for predicting material performance2005In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, p. 247-248Article in journal (Other academic)
  • 2.
    Groning, Mikael
    et al.
    KTH, Superseded Departments, Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, Superseded Departments, Polymer Technology.
    Multiple headspace solid-phase microextraction of 2-cyclopentyl-cyclopentanone in polyamide 6.6: possibilities and limitations in the headspace analysis of solid hydrogen-bonding matrices2004In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1052, no 02-jan, p. 61-68Article in journal (Refereed)
    Abstract [en]

    The interactions between a polar analyte, 2-cyclopentyl-cyclopentanone, and a solid polar matrix, polyamide 6.6, during multiple headspace solid-phase microextraction (MHS-SPME) were studied. Strong hydrogen bonding between the analyte and the matrix was observed and shown to cause slow migration and adsorption of the analyte. These matrix effects led to erroneous quantitation despite the use of multiple headspace extraction. Addition of water disrupted the hydrogen bonding between the analyte and the matrix and a valid quantitation was achieved. The addition of water also increased the sensitivity and allowed the identification of 2,5-bis(cyclopentyl)-1-cyclopentanone. The amount of 2-cyclopentyl-cyclopentanone in five different polyamide 6.6 samples was measured using the developed multiple headspace solid-phase microextraction method with water-displacer. The measured concentrations were in the range of 1.44-15.61 mug/g. These concentrations were up to 30% higher than the concentrations measured after microwave-assisted extraction (MAE), which indicates incomplete recovery by MAE. The use of water as a displacer eliminated the matrix effects and complete recovery of the analyte was achieved by MHS-SPME.

  • 3.
    Gröning, Mikael
    KTH, Superseded Departments, Fibre and Polymer Technology.
    Solid-Phase Microextraction in Polymer Analysis - Extraction of Volatiles from Virgin and Recycled Polyamide 6.62004Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    The extraction and quantitative analysis of low molar mass compounds in polymers is an analytical challenge. It is also important from a practical point of view because the low molar mass compounds in time will migrate from the polymers into the surrounding environment. It is especially important to gain knowledge about the migrating compounds in applications such as medical implants, packaging materials and car interiors. The main aim of this thesis was to develop headspace solid phase microextraction (HS-SPME) methods to meet this challenge. In addition, the work aimed to show the applicability of the methods developed in quality control of polymers, degradation studies and assessment of polymer durability.

    Factors influencing the extraction of low molar mass compounds from polyamide 6.6 were studied. Particular attention was paid to the matrix effects and to the establishment of headspace equilibrium of 2-cyclopentyl-cyclopentanone in solid polyamide. Hydrogen bonding and adsorption of analyte to the polar matrix was observed and found to cause exceedingly slow establishment of equilibrium. The adsorption could be eliminated by the addition of water, which replaced 2-cyclopentyl-cyclopentanone at the adsorption sites of the polyamide and made it possible to measure the 2-cyclopentyl-cyclopentanone content in polyamide 6.6 using multiple headspace solid-phase microextraction (MHS-SPME).

    A correlation between the emitted amount of 2-cyclopentyl-cyclopentanone and the amount 2-cyclopentyl-cyclopentanone in the material was found. The correlation was valid also under non-equilibrium conditions, which allows rapid assessment of the 2-cyclopentyl-cyclopentanone content in polyamide 6.6 using headspace sampling.

    20 different low molar mass compounds were identified in virgin and recycled polyamide 6.6. The compounds could be classified into four groups: cyclic imides, pyridines, chain fragments and cyclopentanones. The structures of the degradation products imply that the thermo-oxidative degradation starts at the N-vicinal methyl group. Larger amounts of degradation products at lower degree of degradation were formed in recycled than in virgin polyamide 6.6. Thus, processing increases the susceptibility of polyamide 6.6 to thermal oxidation. The total amount of cyclopentanones was reduced upon processing and oxidation. Cyclopentanones are thus not thermo-oxidation products of polyamide 6.6. N-pentyl-succinimide showed the most significant increase due to oxidation and processing. The formation of N-pentyl-succinimide was in correlation with the simultaneous changes in tensile strength. The largest increase in N-pentyl-succinimide coincided with the largest drop in tensile strength.

  • 4.
    Gröning, Mikael
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Polymer Technology.
    Polymer Recycling and Degradation2005In: McGraw-Hill Yearbook of Science and Technology 2005, New York: McGraw-Hill, 2005, p. 268-271Chapter in book (Other academic)
  • 5.
    Gröning, Mikael
    et al.
    KTH, Superseded Departments, Polymer Technology.
    Hakkarainen, Minna
    KTH, Superseded Departments, Polymer Technology.
    Correlation between emitted and total amount of 2-cyclopentyl-cyclopentanone in polyamide 6.6 allows rapid assessment by HS and HS-SPME under non-equilibrium conditions2004In: Journal of Chromatography A, ISSN 0021-9673, E-ISSN 1873-3778, Vol. 1052, no 02-jan, p. 151-159Article in journal (Refereed)
    Abstract [en]

    A correlation was found between the emitted and total amount of 2-cyclopentyl-cyclopentanone in polyamide 6.6. The emitted amounts were measured by GC-MS after headspace (HS) or headspace solid-phase microextraction (HS-SPME) and the total content was determined after microwave-assisted extraction (MAE). The correlation was valid also under non-equilibrium conditions, which allows rapid assessment of 2-cyclopentyl-cyclopentanone content in polyamide 6.6 by headspace techniques. The incubation time needed for non-equilibrium headspace analysis could be reduced from 5 h to 45 min if the PA66 granules were milled to powder prior to extraction. However, to reach equilibrium between the analyte in the solid sample and the headspace still required 12 h of incubation at 80degreesC. The long incubation time is explained by slow diffusion rate due to the strong hydrogen bonding between analyte and matrix and the relatively high crystallinity of polyamide 6.6. The headspace extraction profile showed several equilibrium-like patterns that are easily mistaken for the real equilibrium.

  • 6.
    Gröning, Mikael
    et al.
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Albertsson, Ann-Christine
    KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
    Quantitative determination of volatiles in polymers and quality control of recycled materials by static headspace techniques2008In: CHROMATOGRAPHY FOR SUSTAINABLE POLYMERIC MATERIALS: RENEWABLE, DEGRADABLE AND RECYCLABLE, Berlin: Springer Verlag , 2008, Vol. 211, p. 51-84Chapter in book (Refereed)
    Abstract [en]

    A presentation is given of headspace (HS) extraction and headspace solid-phase microextraction (HS-SPME) techniques and their combination with multiple headspace (MHS) extraction to enable quantitative determination of volatiles in solid polymer matrixes. As an example, the development of HS, HS-SPME, and MHS-SPME methods for extraction of volatiles from thermo-oxidized and/or recycled polyamide 6.6 is reviewed with special focus on the problems encountered when extracting analytes from solid-sample matrixes including excessively long equilibrium times and adsorption of analytes to the sample matrix. Examples are also given of the application of HS-SPME in quality control of recycled materials, in durability assessment of polymeric materials and in degradation studies.

  • 7.
    Gröning, Mikael
    et al.
    KTH, Superseded Departments, Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, Superseded Departments, Polymer Technology.
    Albertsson, Ann-Christine
    KTH, Superseded Departments, Polymer Technology.
    Recycling of glass fibre reinforced phenolic prepreg waste. part 1. Recovery and reuse of glass fibres in PP and PA62004In: Polymers & polymer composites, ISSN 0967-3911, E-ISSN 1478-2391, Vol. 12, no 6, p. 491-500Article in journal (Refereed)
    Abstract [en]

    The present paper describes a feasible process to reuse glass fibres separated from phenolic prepreg waste as reinforcing filler in polypropylene (PP) and polyamide 6 (PA6). Prior to compounding, the recovered glass fibres were cut into 50 mm long fibre bundles and surface treated with gamma-aminopropyltriethoxysilane (APS) for increased composite interfacial strength. Electron Spectroscopy for Chemical Analysis (ESCA) and Atomic Force Microscopy (AFM) showed that the silane coupling agent was attached to the surface of the glass fibres but the silane layer was somewhat uneven, probably due to the presence of small amounts of organic contaminants. In addition it was found necessary to clean the glass fibres from organic contaminants by thermal treatment in order to attach silane coupling agent to the surfaces. The tensile strengths obtained for PP and PA6 composites with 30 wt% filler level of surface treated recovered glass fibres were 49 MPa and 101 MPa, respectively. This should be compared to 30 MPa and 75 MPa for composites containing untreated glass fibres and 19 MPa and 52 MPa for pure PP and PA6. Addition of 5 wt% PP-g-MA compatibiliser to the PP composite increased the tensile strength by another 14%, i.e. to 56 MPa. The good interfacial compatibility achieved by APS surface treatment and compatibilisation was verified by Scanning Electron Microscopy (SEM).

  • 8.
    Gröning, Mikael
    et al.
    KTH, Superseded Departments, Fibre and Polymer Technology.
    Hakkarainen, Minna
    KTH, Superseded Departments, Polymer Technology.
    Albertsson, Ann-Christine
    KTH, Superseded Departments, Polymer Technology.
    Recycling of glass-fibre reinforced phenolic prepreg waste. Part 2. Milled prepreg as functional filler in PP and PA62004In: Polymers & polymer composites, ISSN 0967-3911, E-ISSN 1478-2391, Vol. 12, no 6, p. 501-509Article in journal (Refereed)
    Abstract [en]

    Phenolic resin impregnated glass-fibre prepreg waste was milled and used as reinforcing filler in polypropylene (PP) and polyamide 6 (PA6). Prepreg was particularly suitable to be used as filler in PA6. The fibres were homogeneously distributed during compounding and the addition of 20 wt% prepreg increased the tensile strength of PA6 by 63%, from 52 MPa to 85 MPa. Milled prepreg alone did not significantly increase the tensile strength of PP. However, if compounded together with maleic anhydride grafted polypropylene (PP-g-MA, Epolene G3003) compatibiliser, prepreg can be used as reinforcing filler in PP as well. Addition of 20 wt% prepreg together with 5 wt% Epolene G3003 increased the tensile strength of PP from 26 MPa to 43 MPa. In order to mill the prepreg for compounding with thermoplastics it has to be cured. A 2 kg batch of prepreg had to be cured for at least 2 hours at 200 degreesC to prevent the phenolic resin from falling off the glass-fibres. Milling should be performed using screens with holes larger than 3 mm in diameter to reduce the amount of prepreg fibres shorter than 2 mm, as they jam the hopper when feeding the recyclate to the extruder. The initial prepreg fibre length is of little importance to the composite mechanical properties, as the fibres are shortened to approximately the same length during compounding.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf