Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Bergström, Jonas P.
    et al.
    Gry, Marcus
    Lengqvist, Johan
    Lindberg, Johan
    Schwenk, Jochen
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Watkins, Paul B.
    Schuppe Koistinen, Ina
    Novel DILI biomarkers for prediction of acetaminophen-induced human hepatotoxicity2012In: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 211, p. S76-S76Article in journal (Other academic)
  • 2.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ayoglu, Burcu
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häggmark, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kim
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    et al.,
    Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 11, p. 4607-4619Article in journal (Refereed)
    Abstract [en]

    The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.

  • 3.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edqvist, P. -H
    Nyaiesh, Etienne-Nicholas
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bergqvist, M.
    Pontén, F.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Affinity Proteomics Exploration of Melanoma Identifies Proteins in Serum with Associations to T-Stage and Recurrence2017In: Translational Oncology, ISSN 1944-7124, E-ISSN 1936-5233, Vol. 10, no 3, p. 385-395Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Blood-based proteomic profiling may aid and expand our understanding of diseases and their different phenotypes. The aim of the presented study was to profile serum samples from patients with malignant melanoma using affinity proteomic assays to describe proteins in the blood stream that are associated to stage or recurrence of melanoma. MATERIAL AND METHODS: Multiplexed protein analysis was conducted using antibody suspension bead arrays. A total of 232 antibodies against 132 proteins were selected from (i) a screening with 4595 antibodies and 32 serum samples from melanoma patients and controls, (ii) antibodies used for immunohistochemistry, (iii) protein targets previously related with melanoma. The analysis was performed with 149 serum samples from patients with malignant melanoma. Antibody selectivity was then assessed by Western blot, immunocapture mass spectrometry, and epitope mapping. Lastly, indicative antibodies were applied for IHC analysis of melanoma tissues. RESULTS: Serum levels of regucalcin (RGN) and syntaxin 7 (STX7) were found to be lower in patients with both recurring tumors and a high Breslow's thickness (T-stage 3/4) compared to low thickness (T-stage 1/2) without disease recurrence. Serum levels of methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) were instead elevated in sera of T3/4 patients with recurrence. The analysis of tissue sections with S100A6 and MTHFD1L showed positive staining in a majority of patients with melanoma, and S100A6 was significantly associated to T-stage. CONCLUSIONS: Our findings provide a starting point to further study RGN, STX7, MTHFD1L and S100A6 in serum to elucidate their involvement in melanoma progression and to assess a possible contribution to support clinical indications.

  • 4.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Edqvist, Per-Henrik
    Nyaiesh, Etienne-Nicholas
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Bergqvist, Michael
    Pontén, Fredrik
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Affinity proteomics exploration of melanoma identifies proteins in serum with associations to T-stage and recurrenceManuscript (preprint) (Other academic)
  • 5. Darmanis, Spyros
    et al.
    Cui, Tao
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Li, Su-Chen
    Öberg, Kjell
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Giandomenico, Valeria
    Identification of Candidate Serum Proteins for Classifying Well-Differentiated Small Intestinal Neuroendocrine Tumors2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 11, p. e81712-Article in journal (Refereed)
    Abstract [en]

    Background: Patients with well-differentiated small intestine neuroendocrine tumors (WD-SI-NETs) are most often diagnosed at a metastatic stage of disease, which reduces possibilities for a curative treatment. Thus new approaches for earlier detection and improved monitoring of the disease are required. Materials and Methods: Suspension bead arrays targeting 124 unique proteins with antibodies from the Human Protein Atlas were used to profile biotinylated serum samples. Discoveries from a cohort of 77 individuals were followed up in a cohort of 132 individuals both including healthy controls as well as patients with untreated primary WD-SI-NETs, lymph node metastases and liver metastases. Results: A set of 20 antibodies suggested promising proteins for further verification based on technically verified statistical significance. Proceeding, we assessed the classification performance in an independent cohort of patient serum, achieving, classification accuracy of up to 85% with different subsets of antibodies in respective pairwise group comparisons. The protein profiles of nine targets, namely IGFBP2, IGF1, SHKBP1, ETS1, IL1 alpha, STX2, MAML3, EGR3 and XIAP were verified as significant contributors to tumor classification. Conclusions: We propose new potential protein biomarker candidates for classifying WD-SI-NETs at different stage of disease. Further evaluation of these proteins in larger sample sets and with alternative approaches is needed in order to further improve our understanding of their functional relation to WD-SI-NETs and their eventual use in diagnostics.

  • 6.
    Drobin, Kimi
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Antibody-based bead arrays for high-throughput protein profiling in human plasma and serum2018Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Affinity-based proteomics utilizes affinity binders to detect target proteins in a large-scale manner. This thesis describes a high-throughput method, which enables the search for biomarker candidates in human plasma and serum. A highly multiplexed antibody-based suspension bead array is created by coupling antibodies generated in the Human Protein Atlas project to color-coded beads. The beads are combined for parallel analysis of up to 384 analytes in patient and control samples. This provides data to compare protein levels from the different groups.

    In paper I osteoporosis patients are compared to healthy individuals to find disease-linked proteins. An untargeted discovery screening was conducted using 4608 antibodies in 16 cases and 6 controls. This revealed 72 unique proteins, which appeared differentially abundant. A validation screening of 91 cases and 89 controls confirmed that the protein autocrine motility factor receptor (AMFR) is decreased in the osteoporosis patients.

    Paper II investigates the risk proteome of inflammatory bowel disease (IBD). Antibodies targeting 209 proteins corresponding to 163 IBD genetic risk loci were selected. To find proteins related to IBD or its subgroups, sera from 49 patients with Crohn’s disease, 51 with ulcerative colitis and 50 matched controls were analyzed. From these targeted assays, the known inflammation-related marker serum amyloid protein A (SAA) was shown to be elevated in the IBD cases. In addition, the protein laccase (multi-copper oxidoreductase) domain containing 1 (LACC1) was found to be decreased in the IBD subjects.

    In conclusion, assays using affinity-based bead arrays were developed and applied to screen human plasma and serum samples in two disease contexts. Untargeted and targeted screening strategies were applied to discover disease-associated proteins. Upon further validation, these potential biomarker candidates could be valuable in future disease studies.

  • 7.
    Drobin, Kimi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics.
    Assadi, Ghazaleh
    Hong, Mun-Gwan
    Andersson, Eni
    Fredolini, Claudia
    Forsström, Björn
    Reznichenko, Anna
    Akhter, Tahmina
    Ek, Weronica
    Bonfiglio, Ferdinando
    Berner Hansen, Mark
    Sandberg, Kristian
    Greco, Dario
    Repsilber, Dirk
    Schwenk, Jochen
    D'Amato, Mauro
    Halfvarson, Jonas
    Targeted analysis of serum proteins encoded at known inflammatory bowel disease risk lociManuscript (preprint) (Other academic)
  • 8.
    Drobin, Kimi
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Highly multiplexed antibody suspension bead arrays for plasma protein profiling2013In: Methods in Molecular Biology, ISSN 1064-3745, E-ISSN 1940-6029, Vol. 1023, p. 137-145Article in journal (Refereed)
    Abstract [en]

    Alongside the increasing availability of affinity reagents, antibody microarrays have become a powerful tool to screen for target proteins in complex samples. Applying directly labeled samples onto arrays instead of using sandwich assays offers an approach to facilitate a systematic, high-throughput, and flexible exploration of protein profiles in body fluids such as serum or plasma. As an alternative to planar arrays, a system based on color-coded beads for the creation of antibody arrays in suspension has become available to offer a microtiter plate-based option for screening larger number of samples with variable sets of capture reagents. A procedure was established for analyzing biotinylated samples without the necessity to remove excess labeling substance. We have shown that this assay system allows detecting proteins down into lower pico-molar and higher pg/ml levels with dynamic ranges over three orders of magnitude. Presently, this workflow enables the profiling of 384 samples for up to 384 proteins per assay.

  • 9.
    Häggmark, Anna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Schwenk, Jochen M
    KTH, School of Biotechnology (BIO), Proteomics.
    Classification of protein profiles from antibody microarrays using heat and detergent treatment.2011In: New Biotechnology, ISSN 1871-6784, E-ISSN 1876-4347, Vol. 29, no 5, p. 564-570Article in journal (Refereed)
    Abstract [en]

    Antibody microarrays offer new opportunities for exploring the proteome and to identify biomarker candidates in human serum and plasma. Here, we have investigated the effect of heat and detergents on an antibody-based suspension bead array (SBA) assay using polyclonal antibodies and biotinylated plasma samples. With protein profiles from more than 2300 antibodies generated in 384-plex antibody SBAs, three major classes of heat and detergent susceptibility could be described. The results show that washing of the beads with SDS (rather than Tween) after target binding lowered intensity levels of basically all profiles and that about 50% of the profiles appeared to be lowered to a similar extent by heating of the sample. About 33% of the profiles appeared to be insensitive to heat treatment while another 17% showed a positive influence of heat to yield elevated profiles. The results suggest that the classification of antibodies is driven by the molecular properties of the antibody-antigen interaction and can generally not be predicted based on protein class or Western blot data. The experimental scheme presented here can be used to systematically categorize antibodies and thereby combine antibodies with similar properties into targeted arrays for analysis of plasma and serum.

  • 10.
    Mikus, Maria
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gry, Marcus
    KTH.
    Bachmann, J.
    Lindberg, J.
    Yimer, G.
    Aklillu, E.
    Makonnen, E.
    Aderaye, G.
    Roach, J.
    Fier, I.
    Kampf, C.
    Göpfert, J.
    Perazzo, H.
    Poynard, T.
    Stephens, C.
    Andrade, R. J.
    Lucena, M. I.
    Arber, N.
    Uhlén, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Watkins, P. B.
    Schwenk, Jochen M
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nilsson, P. Anders
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schuppe-Koistinen, I.
    Elevated levels of circulating CDH5 and FABP1 in association with human drug-induced liver injury2016In: Liver international (Print), ISSN 1478-3223, E-ISSN 1478-3231, Vol. 37, no 1, p. 132-140Article in journal (Refereed)
    Abstract [en]

    Background & Aims: The occurrence of drug-induced liver injury (DILI) is a major issue in all phases of drug development. To identify novel biomarker candidates associated with DILI, we utilised an affinity proteomics strategy, where antibody suspension bead arrays were applied to profile plasma and serum samples from human DILI cases and controls. Methods: An initial screening was performed using 4594 randomly selected antibodies, representing 3450 human proteins. Resulting candidate proteins together with proposed DILI biomarker candidates generated a DILI array of 251 proteins for subsequent target analysis and verifications. In total, 1196 samples from 241 individuals across four independent cohorts were profiled: healthy volunteers receiving acetaminophen, patients with human immunodeficiency virus and/or tuberculosis receiving treatment, DILI cases originating from a wide spectrum of drugs, and healthy volunteers receiving heparins. Results: We observed elevated levels of cadherin 5, type 2 (CDH5) and fatty acid-binding protein 1 (FABP1) in DILI cases. In the two longitudinal cohorts, CDH5 was elevated already at baseline. FABP1 was elevated after treatment initiation and seemed to respond more rapidly than alanine aminotransferase (ALT). The elevations were verified in the DILI cases treated with various drugs. In the heparin cohort, CDH5 was stable over time whereas FABP1 was elevated. Conclusions: These results suggest that CDH5 may have value as a susceptibility marker for DILI. FABP1 was identified as a biomarker candidate with superior characteristics regarding tissue distribution and kinetics compared to ALT but likely with limited predictive value for the development of severe DILI. Further studies are needed to determine the clinical utility of the proposed markers. © 2016 John Wiley & Sons A/S.

  • 11.
    Qundos, Ulrika
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mattsson, Cecilia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöberg, Ronald
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Solomon, David
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Michaelsson, Karl
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Affinity proteomics discovers decreased levels of AMFR in plasma from Osteoporosis patients2016In: PROTEOMICS - Clinical Applications, ISSN 1862-8346, E-ISSN 1862-8354, Vol. 10, no 6, p. 681-690Article in journal (Refereed)
    Abstract [en]

    Purpose: Affinity proteomic approaches by antibody bead arrays enable multiplexed analysis of proteins in body fluids. In the presented study, we investigated blood plasma within osteoporosis to discovery differential protein profiles and to propose novel biomarkers candidates for subsequent studies. Experimental design: Starting with 4608 antibodies and plasma samples from 22 women for an untargeted screening, a set of 72 proteins were suggested for further analysis. Complementing these with targets from literature and other studies, a targeted bead array of 180 antibodies was built to profile for 92 proteins in plasma samples of 180 women from two independent population-based studies. Results: Differential profiles between osteoporosis patients and matched controls were discovered for 12 proteins in at least one of the two study sets. Among these targets, the levels of autocrine motility factor receptor (AMFR) were concordantly lower in plasma of female osteoporosis patients. Subsequently, verification of anti-AMFR antibody selectivity was conducted using high-density peptide and protein arrays, and Western blotting. Conclusions and clinical relevance: Further validation in additional study sets will be needed to determine the clinical value of the observed decrease in AMFR plasma levels in osteoporosis patients, but AMFR may aid our understanding of disease mechanisms and could support existing tools for diagnosis and monitoring of patient mobility within osteoporosis.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf