Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adams, S. M.
    et al.
    Blagorodnova, N.
    Kasliwal, M. M.
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Barlow, T.
    Bue, B.
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cao, Y.
    Cenko, S. B.
    Cook, D. O.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fox, O. D.
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Gezari, S.
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ho, A. Y. Q.
    Hung, Tiara
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Karamehmetoglu, Emir
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kulkarni, S. R.
    Kupfer, T.
    Laher, R. R.
    Masci, F. J.
    Miller, A. A.
    Neill, J. D.
    Nugent, P. E.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walters, R.
    iPTF Survey for Cool Transients2018In: Publications of the Astronomical Society of the Pacific, ISSN 0004-6280, E-ISSN 1538-3873, Vol. 130, no 985, article id 034202Article in journal (Refereed)
    Abstract [en]

    We performed a wide-area (2000 deg2) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.

  • 2.
    Amanullah, Rahman
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Joel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Petrushevska, Tanja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Brown, P. J.
    Cao, Y.
    Contreras, C.
    Dahle, H.
    Elias-Rosa, N.
    Fynbo, J. P. U.
    Gorosabel, J.
    Guaita, L.
    Hangard, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Howell, D. A.
    Hsiao, E. Y.
    Kankare, E.
    Kasliwal, M.
    Leloudas, G.
    Lundqvist, Peter
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Mattila, S.
    Nugent, P.
    Phillips, M. M.
    Sandberg, Andreas
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Stanishev, V.
    Sullivan, M.
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Östlin, Göran
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Asadi, Saghar
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Herrero-Illana, R.
    Jensen, J. J.
    Karhunen, K.
    Lazarevic, S.
    Varenius, E.
    Santos, P.
    Sridhar, S. Seethapuram
    Wallström, S. H. J.
    Wiegert, J.
    Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 mu m2015In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 453, no 3, p. 3300-3328Article in journal (Refereed)
    Abstract [en]

    We present ultraviolet (UV) observations of six nearby Type Ia supernovae (SNe Ia) obtained with the Hubble Space Telescope, three of which were also observed in the near-IR (NIR) with Wide-Field Camera 3. UV observations with the Swift satellite, as well as ground-based optical and NIR data provide complementary information. The combined data set covers the wavelength range 0.2-2 mu m. By also including archival data of SN 2014J, we analyse a sample spanning observed colour excesses up to E(B - V) = 1.4 mag. We study the wavelength-dependent extinction of each individual SN and find a diversity of reddening laws when characterized by the total-to-selective extinction R-V. In particular, we note that for the two SNe with E(B - V) greater than or similar to 1 mag, for which the colour excess is dominated by dust extinction, we find R-V = 1.4 +/- 0.1 and R-V = 2.8 +/- 0.1. Adding UV photometry reduces the uncertainty of fitted R-V by similar to 50 per cent allowing us to also measure R-V of individual low-extinction objects which point to a similar diversity, currently not accounted for in the analyses when SNe Ia are used for studying the expansion history of the Universe.

  • 3.
    Anderson, Brandon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Larsson, Stefan
    Li, L.
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zimmer, Stephan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    SUPPLEMENT: LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914 (2016, ApJL, 826, L13)2016In: Astrophysical Journal Supplement Series, ISSN 0067-0049, E-ISSN 1538-4365, Vol. 225, no 1, article id 8Article in journal (Refereed)
    Abstract [en]

    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  • 4.
    Anderson, Brandon
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Meyer, Manuel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Zimmer, Stephan
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Rosswog, Stephan
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW 1509142016In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 826, no 1, article id L13Article in journal (Refereed)
    Abstract [en]

    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.

  • 5.
    Bulla, Mattia
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Feindt, Ulrich
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Estimating dust distances to Type Ia supernovae from colour excess time evolution2018In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 473, no 2, p. 1918-1929Article in journal (Refereed)
    Abstract [en]

    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5(-4.9)(+ 9.0) or 22.1(-3.8)(+ 6.0) pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than similar to 50 and 38 pc for LMC-and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.

  • 6.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics.
    The Circumstellar Environment of Type Ia Supernovae2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Type Ia supernovae (SNe Ia) have proven to be extremely useful for measuring cosmological distances and were used for the discovery of the accelerated expansion of the universe. Although thousands of SNe Ia have been observed to date, many questions surrounding the physics of the explosions and the nature of their progenitor systems remain unanswered. An notable property of many SNe Ia is the relation between extinction due to dust and their colour. For example SN 2014J, the nearest SN Ia in recent years, has an extinction relation which would be very unusual to observe in the Milky Way. One possible explanation to the peculiar extinction could be the presence of circumstellar (CS) dust surrounding the explosions. Incidentally, some proposed progenitor models of SNe Ia suggest that the explosions are surrounded by shells of matter, which could account for the unusual extinction.

    CS gas would be ionised, if it is exposed to the intense ultraviolet (UV) radiation of a SN Ia. The research presented in this thesis focuses on the search for CS gas by observing the effects of photoionisation on absorption lines commonly detected in optical spectra. Simple models suggest that the frequently studied sodium doublet (Na I D) should significantly decrease or even disappear if the gas is in the CS environment. Conversely, the absence of variations implies that the absorbing gas clouds must be far from the explosion, in the interstellar medium (ISM). To date, few SNe Ia have been shown to have variable absorption lines, to which we have added another case with SN 2013gh. Yet, we have also shown that most observations searching for variable absorption lines have been taken at too late phases, when most CS gas will have already been ionised. Setting out to obtain the earliest possible coverage of a SN Ia with high-resolution spectra, we have been able to set strong limits on the presence of CS gas surrounding SN 2017cbv.

    Along with evidence from other observational methods, these results have shown that there is little matter in the CS environments of SNe Ia, suggesting that the peculiar extinction likely results from the dust properties of their host galaxy ISM. Although the progenitor question cannot be resolved by these observations, nondetections of CS gas point to models which do not deposit large amounts of matter in their surroundings.

  • 7.
    Ferretti, Raphael
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Joel
    Lundqvist, Peter
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv2017In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 851, no 2, article id L43Article in journal (Refereed)
    Abstract [en]

    Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe. Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between -14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between similar to 8 x 10(16)-2 x 10(19) cm and similar to 10(15)-10(17) cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to M-HI(CSM) < 3 x 10(-4) x (R/10(17)[cm(2)]) M-circle dot. The bounds point to progenitor models that deposit little gas in their CS environment.

  • 8.
    Ferretti, Raphael
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, J.
    Vreeswijk, P. M.
    Butler, R. P.
    Cao, Y.
    Cenko, S. B.
    Doran, G.
    Filippenko, A. V.
    Freeland, Emily
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hosseinzadeh, G.
    Howell, D. A.
    Lundqvist, P.
    Mattila, S.
    Nordin, J.
    Nugent, P. E.
    Petrushevska, Tanja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Valenti, S.
    Vogt, S.
    Wozniak, P.
    Time-varying sodium absorption in the Type Ia supernova 2013gh2016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 592, article id A40Article in journal (Refereed)
    Abstract [en]

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R approximate to 10(19) cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.

  • 9.
    Ferretti, Raphael
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Petrushevska, Tanja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Borthakur, S.
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fox, O.
    Freeland, Emily
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hangard, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hayes, Matthew
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc2017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 606, article id A111Article in journal (Refereed)
    Abstract [en]

    Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their wellknown spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features.

    Aims. We aim to study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221.

    Methods. Using a time-series of high-resolution spectra, we have examined narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we have taken advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight.

    Results. From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust.

    Conclusions. We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past ~109 years. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221.

  • 10.
    Goobar, Ariel
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.
    Kulkarni, S. R.
    Nugent, P. E.
    Johansson, Joel
    Steidel, C.
    Law, D.
    Mörtsell, Edvard
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Quimby, Robert
    Blagorodnova, N.
    Brandeker, A.
    Cao, Y.
    Cooray, A.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hangard, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kasliwai, M.
    Kupfer, T.
    Lunnan, R.
    Masci, F.
    Miller, A. A.
    Nayyeri, H.
    Neill, J. D.
    Ofek, E. O.
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Petrushevska, Tanja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ravi, V.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sullivan, M.
    Taddia, Francesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Walters, R.
    Wilson, D.
    Yan, L.
    Yaron, O.
    iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 356, no 6335, p. 291-295Article in journal (Refereed)
    Abstract [en]

    We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.

  • 11.
    Goobar, Ariel
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Johansson, Joel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Cao, Y.
    Perley, D. A.
    Kasliwal, M. M.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Nugent, P. E.
    Harris, C.
    Gal-Yam, A.
    Ofek, E. O.
    Tendulkar, S. P.
    Dennefeld, M.
    Valenti, S.
    Arcavi, I.
    Banerjee, D. P. K.
    Venkataraman, V.
    Joshi, V.
    Ashok, N. M.
    Cenko, S. B.
    Diaz, R. F.
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Horesh, A.
    Howell, D. A.
    Kulkarni, S. R.
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Petrushevska, Tanja
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Sand, D.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Stanishev, V.
    Bloom, J. S.
    Surace, J.
    Dupuy, T. J.
    Liu, M. C.
    THE RISE OF SN 2014J IN THE NEARBY GALAXY M822014In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 784, no 1, article id L12Article in journal (Refereed)
    Abstract [en]

    We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, R-V less than or similar to 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location.

  • 12. Kasliwal, M. M.
    et al.
    Cenko, S. B.
    Singer, L. P.
    Corsi, A.
    Cao, Y.
    Barlow, T.
    Bhalerao, V.
    Bellm, E.
    Cook, D.
    Duggan, G. E.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Frail, D. A.
    Horesh, A.
    Kendrick, R.
    Kulkarni, S. R.
    Lunnan, R.
    Palliyaguru, N.
    Laher, R.
    Masci, F.
    Manulis, I.
    Miller, A. A.
    Nugent, P. E.
    Perley, D.
    Prince, T. A.
    Quimby, R. M.
    Rana, J.
    Rebbapragada, U.
    Sesar, B.
    Singhal, A.
    Surace, J.
    Van Sistine, A.
    iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL- WAVE TRANSIENT GW1509142016In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 824, no 2, article id L24Article in journal (Refereed)
    Abstract [en]

    The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg(2), after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified by the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. This end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves.

  • 13. Miller, A. A.
    et al.
    Cao, Y.
    Piro, A. L.
    Blagorodnova, N.
    Bue, B. D.
    Cenko, S. B.
    Dhawan, Suhail
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fox, O. D.
    Fremling, Christoffer
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Howell, D. A.
    Hosseinzadeh, G.
    Kasliwal, M. M.
    Laher, R. R.
    Lunnan, R.
    Masci, F. J.
    McCully, C.
    Nugent, P. E.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Taddia, Fransesco
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kulkarni, S. R.
    Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing2018In: Astrophysical Journal, ISSN 0004-637X, E-ISSN 1538-4357, Vol. 852, no 2, article id 100Article in journal (Refereed)
    Abstract [en]

    Early observations of Type Ia supernovae (SNe Ia) provide a unique probe of their progenitor systems and explosion physics. Here we report the intermediate Palomar Transient Factory (iPTF) discovery of an extraordinarily young SN Ia, iPTF 16abc. By fitting a power law to our early light curve, we infer that first light for the SN, that is, when the SN could have first been detected by our survey, occurred only 0.15 +/-(0.15)(0.07) days before our first detection. In the similar to 24 hr after discovery, iPTF 16abc rose by similar to 2mag, featuring a near-linear rise in flux for. greater than or similar to 3 days. Early spectra show strong C II absorption, which disappears after similar to 7 days. Unlike the extensively observed Type Ia SN 2011fe, the (B - V)(0) colors of iPTF 16abc are blue and nearly constant in the days after explosion. We show that our early observations of iPTF 16abc cannot be explained by either SN shock breakout and the associated, subsequent cooling or the SN ejecta colliding with a stellar companion. Instead, we argue that the early characteristics of iPTF 16abc, including (i) the rapid, near-linear rise, (ii) the nonevolving blue colors, and (iii) the strong C II absorption, are the result of either ejecta interaction with nearby, unbound material or vigorous mixing of radioactive Ni-56 in the SN ejecta, or a combination of the two. In the next few years, dozens of very young normal SNe Ia will be discovered, and observations similar to those presented here will constrain the white dwarf explosion mechanism.

  • 14.
    Papadogiannakis, Seméli
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Dhawan, Suhail
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Doran, G.
    Feindt, Ulrich
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Hangard, Laura
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Howell, D. A.
    Johansson, J.
    Kasliwal, M. M.
    Laher, R.
    Masci, F.
    Nyholm, A.
    Ofek, E.
    Sollerman, Jesper
    Stockholm University, Faculty of Science, Department of Astronomy. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Yan, L.
    R-band light-curve properties of Type Ia supernovae from the (intermediate) Palomar Transient Factory2019In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 483, p. 5045-5076Article in journal (Refereed)
    Abstract [en]

    We present the best 265 sampled R-band light curves of spectroscopically identified Type Ia supernovae (SNe) from the Palomar Transient Factory (PTF; 2009-2012) survey and the intermediate Palomar Transient Factory (iPTF; 2013-2017). A model-independent light-curve template is built from our data-set with the purpose to investigate average properties and diversity in our sample. We searched for multiple populations in the light-curve properties using machine learning tools. We also utilized the long history of our light curves, up to 4000 days, to exclude any significant pre- or post- supernova flares. From the shapes of light curves we found the average rise time in the R band to be 16.8&#x2212;0.6+0.5'>16.8 +0.5 −0.6  16.8−0.6+0.5 days. Although PTF/iPTF were single-band surveys, by modelling the residuals of the SNe in the Hubble–Lemaître diagram, we estimate the average colour excess of our sample to be 〈E(BV)〉 ≈ 0.05(2) mag and thus the mean corrected peak brightness to be MR = −19.02 ± 0.02 +5log&#x2061;(H0[kms&#x2212;1Mpc&#x2212;1]/70)'>+5log(H 0 [kms −1 Mpc −1 ]/70) +5log⁡(H0[kms−1Mpc−1]/70) mag with only weak dependennce on light–curve shape. The intrinsic scatter is found to be σR = 0.186 ± 0.033 mag for the redshift range 0.05 < z < 0.1, without colour corrections of individual SNe. Our analysis shows that Malmquist bias becomes very significant at z = 0.13. A similar limitation is expected for the ongoing Zwicky Transient Facility (ZTF) survey using the same telescope, but new camera expressly designed for ZTF.

  • 15.
    Petrushevska, Tanja
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kromer, M.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.42017In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 603, article id A136Article in journal (Refereed)
    Abstract [en]

    Context. The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. Aims. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z = 1.4, deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. Methods. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and + 1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. Results. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low and intermediate redshift. There is a noticeable broad feature centred at lambda similar to 3500 angstrom which is present only to a lesser extent in individual low-and intermediate-redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.

  • 16.
    Petrushevska, Tanja
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Bulla, Mattia
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kromer, Markus
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Papadogiannakis, Seméli
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z = 1.4Manuscript (preprint) (Other academic)
  • 17.
    Petrushevska, Tanja
    et al.
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Amanullah, Rahman
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Goobar, Ariel
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Fabbro, S.
    Johansson, J.
    Kjellsson, Tor
    Stockholm University, Faculty of Science, Department of Physics.
    Lidman, C.
    Paech, K.
    Richard, J.
    Dahle, H.
    Ferretti, Raphael
    Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).
    Kneib, J. P.
    Limousin, M.
    Nordin, J.
    Stanishev, V.
    High-redshift supernova rates measured with the gravitational telescope A 16892016In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 594, article id A54Article in journal (Refereed)
    Abstract [en]

    Aims. We present a ground-based, near-infrared search for lensed supernovae behind the massive cluster Abell 1689 at z = 0.18, which is one of the most powerful gravitational telescopes that nature provides. Methods. Our survey was based on multi-epoch J-band observations with the HAWK-I instrument on VLT, with supporting optical data from the Nordic Optical Telescope. Results. Our search resulted in the discovery of five photometrically classified, core-collapse supernovae with high redshifts of 0.671 < z < 1.703 and magnifications in the range Delta m = -0.31 to -1.58 mag, as calculated from lensing models in the literature. Owing to the power of the lensing cluster, the survey had the sensitivity to detect supernovae up to very high redshifts, z similar to 3, albeit for a limited region of space. We present a study of the core-collapse supernova rates for 0.4 < z < 2.9, and find good agreement with previous estimates and predictions from star formation history. During our survey, we also discovered two Type Ia supernovae in A 1689 cluster members, which allowed us to determine the cluster Ia rate to be 0.14(-0.09)(+0.19) SNuB h(2) (SNuB 10(-12) SNe L-circle dot,B(-1) yr(-1)), where the error bars indicate 1 sigma confidence intervals, statistical and systematic, respectively. The cluster rate normalized by the stellar mass is 0.10(-0.06)(+0.13) +/- 0.02 in SNuM h(2) (SNuM = 10(-12) SNe M-1 yr(-1)). Furthermore, we explore the optimal future survey for improving the core-collapse supernova rate measurements at z greater than or similar to 2 using gravitational telescopes, and for detections with multiply lensed images, and we find that the planned WFIRST space mission has excellent prospects. Conclusions. Massive clusters can be used as gravitational telescopes to significantly expand the survey range of supernova searches, with important implications for the study of the high-z transient Universe.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf