Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 23 of 23
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ali, Nurshad
    et al.
    Rajshahi University, Bangladesh.
    Hoque, Md Ashraful
    Rajshahi University, Bangladesh.
    Haque, Abedul
    Rajshahi University, Bangladesh.
    Abdus Salam, Kazi
    Rajshahi University, Bangladesh.
    Karim, Md Rezaul
    Rajshahi University, Bangladesh.
    Rahman, Aminur
    Rajshahi University, Bangladesh.
    Islam, Khairul
    Rajshahi University, Bangladesh.
    Alam Saud, Zahangir
    Rajshahi University, Bangladesh.
    Khalek, Md Abdul
    Rajshahi University, Bangladesh.
    Azim Akhand, Anwarul
    Dhaka University, Bangladesh.
    Hossain, Mostaque
    Rajshahi Medical College Hospital, Bangladesh.
    Mandal, Abul
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Karim, Md Rezaul
    Islamic University, Kushtia, Bangladesh.
    Miyataka, Hideki
    Tokushima Bunri University, Japan.
    Himeno, Seiichiro
    Tokushima Bunri University, Japan.
    Hossain, Khaled
    Rajshahi University, Bangladesh.
    Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh2010In: Environmental Health, E-ISSN 1476-069X, Vol. 9, no 1, article id 36Article in journal (Refereed)
    Abstract [en]

    Background: Arsenic is a potent pollutant that has caused an environmental catastrophe in certain parts of the world including Bangladesh where millions of people are presently at risk due to drinking water contaminated by arsenic. Chronic arsenic exposure has been scientifically shown as a cause for liver damage, cancers, neurological disorders and several other ailments. The relationship between plasma cholinesterase (PChE) activity and arsenic exposure has not yet been clearly documented. However, decreased PChE activity has been found in patients suffering liver dysfunction, heart attack, cancer metastasis and neurotoxicity. Therefore, in this study, we evaluated the PChE activity in individuals exposed to arsenic via drinking water in Bangladesh.

    Methods: A total of 141 Bangladeshi residents living in arsenic endemic areas with the mean arsenic exposure of 14.10 ± 3.27 years were selected as study subjects and split into tertile groups based on three water arsenic concentrations: low (< 129 μg/L), medium (130-264 μg/L) and high (> 265 μg/L). Study subjects were further sub-divided into two groups (≤50 μg/L and > 50 μg/L) based on the recommended upper limit of water arsenic concentration (50 μg/L) in Bangladesh. Blood samples were collected from the study subjects by venipuncture and arsenic concentrations in drinking water, hair and nail samples were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PChE activity was assayed by spectrophotometer.

    Results: Arsenic concentrations in hair and nails were positively correlated with the arsenic levels in drinking water. Significant decreases in PChE activity were observed with increasing concentrations of arsenic in water, hair and nails. The average levels of PChE activity in low, medium and high arsenic exposure groups were also significantly different between each group. Lower levels of PChE activity were also observed in the > 50 μg/L group compared to the ≤50 μg/L group. Moreover, PChE activity was significantly decreased in the skin (+) symptoms group compared to those without (-).

    Conclusions: We found a significant inverse relationship between arsenic exposure and PChE activity in a human population in Bangladesh. This research demonstrates a novel exposure-response relationship between arsenic and PChE activity which may explain one of the biological mechanisms through which arsenic exerts its neuro-and hepatotoxicity in humans.

    Download full text (pdf)
    FULLTEXT01
  • 2.
    Desale, Prithviraj
    et al.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Kashyap, Deboleena
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Nawani, Neelu
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Kapadnis, Balasaheb
    University of Pune, India.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine2014In: Ecotoxicology and Environmental Safety, ISSN 0147-6513, E-ISSN 1090-2414, Vol. 107, p. 260-268Article in journal (Refereed)
    Abstract [en]

    The current scenario of environmental pollution urges the need for an effective solution for toxic heavy metal removal from industrial wastewater. Bioremediation is the most cost effective process employed by the use of microbes especially bacteria resistant to toxic metals. In this study, Lysinibacillus sp. BA2, a nickel tolerant strain isolated from bauxite mine was used for the biosorption of Ni(II). Lysinibacillus sp. BA2 biomass had isoelectric point (pI) of 3.3. The maximum negative zeta potential value (−39.45) was obtained at pH 6.0 which was highly favourable for Ni(II) biosorption. 238.04 mg of Ni(II) adsorbed on one gram of dead biomass and 196.32 mg adsorbed on one gram of live biomass. The adsorption of Ni(II) on biomass increased with time and attained saturation after 180 min with rapid biosorption in initial 30 min. The Langmuir and Freundlich isotherms could fit well for biosorption of Ni(II) by dead biomass while Langmuir isotherm provided a better fit for live biomass based on correlation coefficient values. The kinetic studies of Ni(II) removal, using dead and live biomass was well explained by second-order kinetic model. Ni(II) adsorption on live biomass was confirmed by SEM-EDX where cell aggregation and increasing irregularity of cell morphology was observed even though cells were in non-growing state. The FTIR analysis of biomass revealed the presence of carboxyl, hydroxyl and amino groups, which seem responsible for biosorption of Ni(II). The beads made using dead biomass of Lysinibacillus sp. BA2 could efficiently remove Ni(II) from effluent solutions. These microbial cells can substitute expensive methods for treating nickel contaminated industrial wastewaters.

  • 3.
    Islam, Md Shofikul
    et al.
    University of Rajshahi, Bangladesh / Islamic University, Kushtia-7003, Bangladesh.
    Mohanto, Nayan Chandra
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Karim, Md Rezaul
    Islamic University, Kushtia-7003, Bangladesh.
    Aktar, Sharmin
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Hoque, Md Mominul
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Rahman, Atiqur
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Jahan, Momotaj
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Khatun, Rabeya
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Aziz, Abdul
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Abdus Salam, Kazi
    University of Rajshahi, Rajshahi-6205, Bangladesh / National institutes of Health, Bethesda, USA.
    Saud, Zahangir Alam
    University of Rajshahi, Rajshahi-6205, Bangladesh.
    Hossain, Mostaque
    Kaliganj Upazila Health Complex, Gazipur, Dhaka, Bangladesh.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Haque, Azizul
    Medical University of South Carolina, Charleston, SC, USA.
    Miyataka, Hideki
    Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.
    Himeno, Seiichiro
    Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.
    Hossain, Khaled
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals2015In: Environmental Health, E-ISSN 1476-069X, Vol. 14, no 1, article id 92Article in journal (Refereed)
    Abstract [en]

    Background: Cardiovascular diseases (CVDs) and cancers are the major causes of chronic arsenic exposure-related morbidity and mortality. Matrix metalloproteinase-2 (MMP-2) and −9 (MMP-9) are deeply involved in the pathogenesis of CVDs and cancers. This study has been designed to evaluate the interactions of arsenic exposure with serum MMP-2 and MMP-9 concentrations especially in relation to the circulating biomarkers of CVDs.

    Methods: A total of 373 human subjects, 265 from arsenic-endemic and 108 from non-endemic areas in Bangladesh were recruited for this study. Arsenic concentrations in the specimens were measured by inductively coupled plasma mass spectroscopy (ICP-MS) and serum MMPs were quantified by immunoassay kits.

    Results: Serum MMP-2 and MMP-9 concentrations in arsenic-endemic population were significantly (p < 0.001) higher than those in non-endemic population. Both MMPs showed significant positive interactions with drinking water (rs = 0.208, p < 0.001 for MMP-2; rs = 0.163, p <0.01 for MMP-9), hair (rs= 0.163, p < 0.01 for MMP-2; rs = 0.173, p < 0.01 for MMP-9) and nail (rs= 0.160, p < 0.01 for MMP-2; rs = 0.182, p < 0.001 for MMP-9) arsenic of the study subjects. MMP-2 concentrations were 1.02, 1.03 and 1.05 times, and MMP-9 concentrations were 1.03, 1.06 and 1.07 times greater for 1 unit increase in log-transformed water, hair and nail arsenic concentrations, respectively, after adjusting for covariates (age, sex, BMI, smoking habit and hypertension). Furthermore, both MMPs were increased dose-dependently when the study subjects were split into three (≤10, 10.1-50 and > 50 μg/L) groups based on the regulatory upper limit of water arsenic concentration set by WHO and Bangladesh Government. MMPs were also found to be significantly (p < 0.05) associated with each other. Finally, the concentrations of both MMPs were correlated with several circulating markers related to CVDs.

    Conclusions: This study showed the significant positive associations and dose–response relationships of arsenic exposure with serum MMP-2 and MMP-9 concentrations. This study also showed the interactions of MMP-2 and MMP-9 concentrations with the circulating markers of CVDs suggesting the MMP-2 and MMP-9 -mediated mechanism of arsenic-induced CVDs.

    Download full text (pdf)
    fulltext
  • 4.
    Nahar, Noor
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Ghosh, Sibdas
    School of Arts and Science, Iona College, New Rochelle, NY, USA.
    Nawani, Neelu
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, India.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Functional studies of AtACR2 gene putatively involved in accumulation, reduction and/or sequestration of arsenic species in plants2017In: Biologia, ISSN 0006-3088, E-ISSN 1336-9563, Vol. 72, no 5, p. 520-526Article in journal (Refereed)
    Abstract [en]

    Food-based exposure to arsenic is a human carcinogen and can severely impact human health resulting in many cancerous diseases and various neurological and vascular disorders. This project is a part of our attempts to develop new varieties of crops for avoiding arsenic contaminated foods. For this purpose, we have previously identified four key genes, and molecular functions of two of these, AtACR2 and AtPCSl, have been studied based on both in silico and in vivo experiments. In the present study, a T-DNA tagged mutant, (SALK-143282C with mutation in AtACR2 gene) of Arabidopsis thaliana was studied for further verification of the function of AtACR2 gene. Semi-quantitative RT-PCR analyses revealed that this mutant exhibits a significantly reduced expression of the AtACR2 gene. When exposed to 100 μM of arsenate (AsV) for three weeks, the mutant plants accumulated arsenic approximately three times higher (778 μg/g d. wt.) than that observed in the control plants (235 μg/g d. wt.). In contrast, when the plants were exposed to 100 μM of arsenite (AsIII), no significant difference in arsenic accumulation was observed between the control and the mutant plants (535 μg/g d. wt. and 498 μg/g d. wt., respectively). Also, when arsenate and arsenite was measured separately either in shoots or roots, significant differences in accumulation of these substances were observed between the mutant and the control plants. These results suggest that AtACR2 gene is involved not only in accumulation of arsenic in plants, but also in conversion of arsenate to arsenite inside the plant cells. © 2017 Institute of Molecular Biology, Slovak Academy of Sciences.

    Download full text (pdf)
    fulltext
  • 5.
    Nahar, Noor
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Moś, Maria
    Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Krakow, Poland.
    Warzecha, Tomasz
    Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Krakow, Poland.
    Ghosh, Sibdas
    School of Arts and Science, Iona College, New Rochelle, USA.
    Hossain, Khaled
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth University, Tathawade, Pune 411033, India.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    In silico and in vivo studies of molecular structures and mechanisms of AtPCS1 protein involved in binding arsenite and/or cadmium in plant cells2014In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 20, no 3, article id 2104Article in journal (Refereed)
    Abstract [en]

    This paper reports a continuation of our previous research on the phytochelatin synthase1 (PCS1) gene involved in binding and sequestration of heavy metals or metalloids in plant cells. Construction of a 3D structure of the Arabidopsis thaliana PCS1 protein and prediction of gene function by employing iterative implementation of the threading assembly refinement (I-TASSER) revealed that PC ligands (3GC-gamma-glutamylcysteine) and Gln50, Pro53, Ala54, Tyr55, Cys56, Ile102, Gly161, His162, Phe163, Asp204 and Arg211 residues are essential for formation of chelating complex with cadmium (Cd²⁺) or arsenite (AsIII). This finding suggests that the PCS1 protein might be involved in the production of the enzyme phytochelatin synthase, which might in turn bind, localize, store or sequester heavy metals in plant cells. For validation of the in silico results, we included a T-DNA tagged mutant of Arabidopsis thaliana, SAIL_650_C12, (mutation in AtPCS1 gene) in our investigation. Furthermore, using reverse transcriptase PCR we confirmed that the mutant does not express the AtPCS1 gene. Mutant plants of SAIL_650_C12 were exposed to various amounts of cadmium (Cd²⁺) and arsenite (AsIII) and the accumulation of these toxic metals in the plant cells was quantified spectrophotometrically. The levels of Cd²⁺ and AsIII accumulation in the mutant were approximately 2.8 and 1.6 times higher, respectively, than that observed in the wild-type controlled plants. We confirmed that the results obtained in in silico analyses complement those obtained in in vivo experiments.

  • 6.
    Nahar, Noor
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Rahman, Aminur
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Mós, Maria
    Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Poland.
    Warzecha, Tomasz
    Department of Plant Breeding and Seed Science, University of Agriculture in Krakow, Poland.
    Algerin, Maria
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Ghosh, Sibdas
    Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA.
    Johnson-Brousseau, Sheila
    Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA.
    Mandal, Abul
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    In silico and in vivo studies of an Arabidopsis thaliana gene, ACR2, putatively involved in arsenic accumulation in plants2012In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 18, no 9, p. 4249-4262Article in journal (Refereed)
    Abstract [en]

    Previously, our in silico analyses identified four candidate genes that might be involved in uptake and/or accumulation of arsenics in plants: arsenate reductase 2 (ACR2), phytochelatin synthase 1 (PCS1) and two multi-drug resistant proteins (MRP1 and MRP2) [Lund et al. (2010) J Biol Syst 18:223–224]. We also postulated that one of these four genes, ACR2, seems to play a central role in this process. To investigate further, we have constructed a 3D structure of the Arabidopsis thaliana ACR2 protein using the iterative implementation of the threading assembly refinement (I-TASSER) server. These analyses revealed that, for catalytic metabolism of arsenate, the arsenate binding-loop (AB-loop) and residues Phe-53, Phe-54, Cys-134, Cys-136, Cys-141, Cys-145, and Lys-135 are essential for reducing arsenate to arsenic intermediates (arsenylated enzyme-substrate intermediates) and arsenite in plants. Thus, functional predictions suggest that the ACR2 protein is involved in the conversion of arsenate to arsenite in plant cells. To validate the in silico results, we exposed a transfer-DNA (T-DNA)-tagged mutant of A. thaliana (mutation in the ACR2 gene) to various amounts of arsenic. Reverse transcriptase PCR revealed that the mutant exhibits significantly reduced expression of the ACR2 gene. Spectrophotometric analyses revealed that the amount of accumulated arsenic compounds in this mutant was approximately six times higher than that observed in control plants. The results obtained from in silico analyses are in complete agreement with those obtained in laboratory experiments.

  • 7.
    Nahar, Noor
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune, India.
    Ghosh, Sibdas
    School of Arts and Science, Iona College, New Rochelle, NY, USA.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana2017In: Journal of plant physiology (Print), ISSN 0176-1617, E-ISSN 1618-1328, Vol. 218, p. 121-126Article in journal (Refereed)
    Abstract [en]

    We have cloned, characterized and transformed the AtACR2 gene (arsenic reductase 2) of Arabidopsis thaliana into the genome of tobacco (Nicotiana tabacum, var Sumsun). Our results revealed that the transgenic tobacco plants are more tolerant to arsenic than the wild type ones. These plants can grow on culture medium containing 200μM arsenate, whereas the wild type can barely survive under this condition. Furthermore, when exposed to 100μM arsenate for 35days the amount of arsenic accumulated in the shoots of transgenic plants was significantly lower (28μg/g d wt.) than that found in the shoots of non-transgenic controls (40μg/g d wt.). However, the arsenic content in the roots of transgenic plants was significantly higher (2400μg/g d. wt.) than that (2100μg/g d. wt.) observed in roots of wild type plants. We have demonstrated that Arabidopsis thaliana AtACR2 gene is a potential candidate for genetic engineering of plants to develop new crop cultivars that can be grown on arsenic contaminated fields to reduce arsenic content of the soil and can become a source of food containing no arsenic or exhibiting substantially reduced amount of this metalloid.

  • 8.
    Nawani, Neelu
    et al.
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, Systems Biology Research Environment. Present affiliation: Laboratory of Applied Microbiology, Faculty of Agriculture, Saga University, Japan.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, Systems Biology Research Environment.
    Microbial biomass for sustainable remediation of wastewater2022In: Biomass, Biofuels, Biochemicals: Circular Bioeconomy: Technologies for Waste Remediation / [ed] Sunita Varjani; Ashok Pandey; Mohammad J. Taherzadeh; Huu Hao Ngo; R. D. Tyagi, Elsevier, 2022, p. 271-292Chapter in book (Refereed)
    Abstract [en]

    Microbial technologies play an extremely crucial role in wastewater treatment. In the last few decades, the focus was on wastewater treatment; however, with the consumption of already finite resources, this focus has now shifted to wastewater remediation and recycling. The latest technologies are more robust at wastewater treatment and the recovery of useful compounds from the wastewaters. This chapter compiles the latest technologies in which microbial/bacterial biomass was used for wastewater treatment and remediation. This chapter also gives a special focus on remediation of wastewaters contaminated with heavy metals, describing the basic technologies as well as smart technologies. Emphasis is given to circular bioeconomy and how it can be implemented in wastewater treatment. A circular model incorporating key areas such as point source detection of pollutants, characterization of wastewaters, choice of the remedial technology, and type of treatment is explained in the chapter.

  • 9.
    Nawani, Neelu
    et al.
    Microbial Diversity Research Centre, Dr D Y Patil Biotechnology and Bioinformatics Institute, Dr D Y Patil Vidyapeeth, Pune, India.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Saha, Anandakumar
    Department of Zoology, University of Rajshahi, Bangladesh.
    Kapadnis, Balasaheb
    Department of Microbiology, Savitribai Phule University of Pune, Pune, India.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora2016In: Biologia, ISSN 0006-3088, E-ISSN 1336-9563, Vol. 71, no 5, p. 494-507Article in journal (Refereed)
    Abstract [en]

    This study illustrates the sporadic distribution of metals in fluvial systems flowing from catchments to urban settlements. This is a detailed study prognosticating the deteriorating quality of rivers at specific locations due to metal pollution. Heavy metals like cadmium, lead, nickel and mercury are prominent in industrial sector. Contour plots derived using spatial and temporal data could determine the focal point of metal pollution and its gradation. Metal values recorded were cadmium 157 mg/L, lead 47 mg/L, nickel 61 mg/L and mercury 0.56 mg/L. Prokaryote diversity was less in polluted water and it harboured metal tolerant bacteria, which were isolated from these polluted sites. Actinomycetes like Streptomyces and several other bacteria like Stenotrophomonas and Pseudomonas isolated from the polluted river sites exhibited changes in morphology in presence of heavy metals. This stress response offered remedial measures as Streptomyces were effective in biosorption of cadmium, nickel and lead and Stenotrophomonas and Pseudomonas were effective in the bioaccumulation of lead and cadmium. The amount of 89 mg of lead and 106 mg of nickel could be adsorbed on one gram of Streptomyces biomass-based biosorbent. Such biological remedies can be further explored to remove metals from polluted sites and from metal contaminated industrial or waste waters.

    Download full text (pdf)
    Biologia-1-2016
  • 10.
    Paul, Sudip Kumar
    et al.
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh / Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, Bangladesh.
    Islam, Md Shofikul
    Department of Applied Nutrition and Food Technology, Islamic University, Kushtia, Bangladesh.
    Hasibuzzaman, M. M.
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Hossain, Faruk
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Anjum, Adiba
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Saud, Zahangir Alam
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Haque, Md Mominul
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Sultana, Papia
    Department of Statistics, University of Rajshahi, Bangladesh.
    Haque, Azizul
    Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States.
    Andric, Klara Biljana
    University of Skövde, School of Bioscience.
    Rahman, Aminur
    The Life Science Center, School of Science and Technology, Örebro University, Örebro, SE 701 82, Sweden.
    Karim, M. Rezaul
    Department of Applied Nutrition and Food Technology, Islamic University, Bangladesh.
    Siddique, Abu Eabrahim
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Karim, Yeasir
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Rahman, Mizanur
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Miyataka, Hideki
    Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
    Xin, Lian
    Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.
    Himeno, Seiichiro
    Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan.
    Hossain, Khaled
    Department of Biochemistry and Molecular Biology, University of Rajshahi, Bangladesh.
    Higher risk of hyperglycemia with greater susceptibility in females in chronic arsenic-exposed individuals in Bangladesh2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 668, p. 1004-1012Article in journal (Refereed)
    Abstract [en]

    Arsenic (As) toxicity and diabetes mellitus (DM) are emerging public health concerns worldwide. Although exposure to high levels of As has been associated with DM, whether there is also an association between low and moderate As exposure and DM remains unclear. We explored the dose-dependent association between As exposure levels and hyperglycemia, with special consideration of the impact of demographic variables, in 641 subjects from rural Bangladesh. The total study participants were divided into three groups depending on their levels of exposure to As in drinking water (low, moderate and high exposure groups). Prevalence of hyperglycemia, including impaired glucose tolerance (IGT) and DM was significantly associated with the subjects’ drinking water arsenic levels. Almost all exposure metrics (As levels in the subjects’ drinking water, hair and nails) showed dose-dependent associations with the risk of hyperglycemia, IGT and DM. Among the variables considered, sex, age, and BMI were found to be associated with higher risk of hyperglycemia, IGT and DM. In sex-stratified analyses, As exposure showed a clearer pattern of dose-dependent risk for hyperglycemia in females than males. Finally, drinking water containing low-to-moderate levels of As (50.01–150 μg/L) was found to confer a greater risk of hyperglycemia than safe drinking water (As ≤10 μg/L). Thus the results suggested that As exposure was dose-dependently associated with hyperglycemia, especially in females. © 2019 Elsevier B.V.

  • 11.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro University.
    Bioremediation of Toxic Metals for Protecting Human Health and the Ecosystem2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Heavy metal pollutants, discharged into the ecosystem as waste by anthropogenic activities, contaminate drinking water for millions of people and animals in many regions of the world. Long term exposure to these metals, leads to several lethal diseases like cancer, keratosis, gangrene, diabetes, cardio- vascular disorders, etc. Therefore, removal of these pollutants from soil, water and environment is of great importance for human welfare. One of the possible eco-friendly solutions to this problem is the use of microorganisms that can accumulate the heavy metals from the contaminated sources, hence reducing the pollutant contents to a safe level.

    In this thesis an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, a chromium resistant bacterium Enterobacter cloacae B2-DHA and a nickel resistant bacterium Lysinibacillus sp. BA2 were isolated and studied. The minimum inhibitory concentration values of these isolates are 500 mM sodium arsenate, 5.5 mM potassium chromate and 9 mM nickel chloride, respectively. The time of flight-secondary ion mass spectrometry and inductively coupled plasma-mass spectroscopy analyses revealed that after 120 h of exposure, the intracellular accumulation of arsenic in B1-CDA and chromium in B2-DHA were 5.0 mg/g dwt and 320 μg/g dwt of cell biomass, respectively. However, the arsenic and chromium contents in the liquid medium were reduced to 50% and 81%, respectively. The adsorption values of BA2 when exposed to nickel for 6 h were 238.04 mg of Ni(II) per gram of dead biomass indicating BA2 can reduce nickel content in the solution to 53.89%. Scanning electron micrograph depicted the effect of these metals on cellular morphology of the isolates. The genetic composition of B1-CDA and B2-DHA were studied in detail by sequencing of whole genomes. All genes of B1-CDA and B2-DHA predicted to be associated with resistance to heavy metals were annotated.

    The findings in this study accentuate the significance of these bacteria in removing toxic metals from the contaminated sources. The genetic mechanisms of these isolates in absorbing and thus removing toxic metals could be used as vehicles to cope with metal toxicity of the contaminated effluents discharged to the nature by industries and other human activities.

    Download full text (pdf)
    fulltext
  • 12.
    Rahman, Aminur
    University of Skövde, School of Bioscience.
    Cloning and characterization of an Arabidopsis thaliana arsenic reductase gene (ACR2) 2010Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Arsenic is a toxic metalloid existing everywhere in the nature. It is toxic to most organisms and considered as human carcinogen. Arsenic contamination leads to severe health problems with diseases like damage of skin, lung, bladder, liver and kidney as well as central nervous system. It is very likely that too much chemicals such as cadmium and arsenic in the consumed foods can also lead to increased birth defects like spinal bifida. In some regions of South-East Asia, like Bangladesh, Burma, Thailand and India, arsenic contamination of human population via either food chain or drinking water is now considered as a national threat for mankind. As arsenic can be found everywhere in nature it may come in contact with food chain very easily through either water or cultivated crops. In South-East Asia the major cultivated crop is rice and it is the staple food for people in many countries like Bangladesh, Burma and Thailand. Cultivation of rice plants requires water either from rainfall or irrigation. Irrigated water in some regions of South-East Asia is highly contaminated with arsenic and by this way arsenic is accumulated in the rice corn which consumed not only by human but also by animals, birds and fishes. In order to avoid arsenic contamination in human food it is essential to find out a way to inhibit arsenic uptake in cultivated plants. Alternatively, we can also find out a way to metabolize arsenic "in plant". In my experiment I have used Arabidopsis thaliana as a model plant to isolate an arsenic reductase (ACR2) gene. This gene has been reported to be involved in metabolism, transport and sequestration of arsenic in plants. My thesis works include studies of the ACR2 gene based on characterization of the corresponding SALK mutants. All plants were exposed to arsenics under in vitro conditions. It was observed that the SALK mutants were more sensitive to arsenics in comparison with the wild type control plants. ACR2 gene was cloned from the genomic DNA of A. thaliana by using Phire Plant Direct PCR kits using database sequences as primers. The amplified product was first ligated to the vector pKOH152 and then transferred to E. coli DH5α competent cells. Recombinant bacterial colonies were screened by colony PCR to confirm the insertion of ACR2. The band (1.3 kb) obtained in gel image indicates that the ACR2 gene was cloned successfully. For further confirmation of these results the cloned gene should be sequenced.

    Download full text (pdf)
    Thesis Molecular Biology
  • 13.
    Rahman, Aminur
    University of Skövde, School of Bioscience.
    Microbial bioremediation and characterization of Arsenic resistant bacteria2011Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Arsenic is a toxic metalloid existing everywhere in the nature. It is toxic to most organisms and considered as human carcinogen. Arsenic contamination leads to severe health problems with diseases like damage of skin, lung, bladder, liver and kidney as well as central nervous system. As arsenic can be found everywhere in nature it may come in contact with food chain very easily through either water or cultivated crops. My thesis works include studies of bioremediation of arsenic by microorganisms. In this experiment the test organisms were collected from the Hazaribagh tanning industrial area of Dhaka, Bangladesh. The whole laboratory works were performed with two types of bacterial strains. Genomic DNA isolation and restriction digestion of genomic DNA, plasmid DNA isolation, Growth response to different concentrations of Arsenic, minimum inhibitory concentration (MIC), plasmid degradation procedures were carried out during this experiment. The MIC value for amoxicillin of these test organisms was 300 μg/ml and they are able to degrade 5 mM arsenite (AsIII) and 40 mM arsenate (AsV). Though the experiment was carried out with two bacterial strains but by observing all experimental data such as restriction digestion, growth response to the arsenic before and after treated with ethidium bromide and minimum inhibitory concentration it can be concluded that these two strains were not different. These bacteria are able to survive in high concentration of antibiotics and arsenic (AsV and AsIII). Loss of plasmid resulted no growth on media containing arsenic. These results support that plasmid contains important genes that are responsible for surviving bacteria in stress conditions.

    Download full text (pdf)
    Thesis Biomedicine
  • 14.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. The Life Science Center, School of Science and Technology, Örebro University, Sweden.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Jass, Jana
    The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Complete genome sequence of Lysinibacillus sphaericus B1-CDA: a bacterium that accumulates arsenics2016In: Genome Announcements, E-ISSN 2169-8287, Vol. 4, no 1, article id e00999-15Article in journal (Refereed)
    Abstract [en]

    Here, we report the genomic sequence and genetic composition of an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA. Assembly of the sequencing reads revealed that the genome size is ~4.5 Mb encompassing ~80% of the chromosomal DNA.

    Download full text (pdf)
    fulltext
  • 15.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro Universitet.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Jass, Jana
    Örebro Universitet.
    Desale, Prithviraj
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Kapadnis, Balu P.
    University of Pune, India.
    Hossain, Khaled
    University of Rajshahi, Bangladesh.
    Saha, Ananda K.
    University of Rajshahi, Bangladesh.
    Ghosh, Sibdas
    Iona College, New Rochelle, New York, USA.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water2014In: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, ISSN 1093-4529, E-ISSN 1532-4117, Vol. 49, no 12, p. 1349-1360Article in journal (Refereed)
    Abstract [en]

    The main objective of this study was to identify and isolate arsenic resistant bacteria that can be used for removing arsenic from thecontaminated environment. Here we report a soil borne bacterium, B1-CDA that can serve this purpose. B1-CDA was isolated fromthe soil of a cultivated land in Chuadanga district located in the southwest region of Bangladesh. The morphological, biochemicaland 16S rRNA analysis suggested that the isolate belongs to Lysinibacillus sphaericus. The minimum inhibitory concentration (MIC)value of the isolate is 500 mM (As) as arsenate. TOF-SIMS and ICP-MS analysis confirmed intracellular accumulation and removalof arsenics. Arsenic accumulation in cells amounted to 5.0 mg g¡1 of the cells dry biomass and thus reduced the arsenicconcentration in the contaminated liquid medium by as much as 50%. These results indicate that B1-CDA has the potential forremediation of arsenic from the contaminated water. We believe the benefits of implementing this bacterium to efficiently reducearsenic exposure will not only help to remove one aspect of human arsenic poisoning but will also benefit livestock and native animalspecies. Therefore, the outcome of this research will be highly significant for people in the affected area and also for humanpopulations in other countries that have credible health concerns as a consequence of arsenic-contaminated water.

  • 16.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro University.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Jass, Jana
    Örebro University.
    Ghosh, Sibdas
    Iona College, New Rochelle, NY, USA.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics2015In: Genomics, ISSN 0888-7543, E-ISSN 1089-8646, Vol. 106, no 6, p. 384-392Article in journal (Refereed)
    Abstract [en]

    Previously, we reported an arsenic resistant bacterium Lysinibacillus sphaericus B1-CDA, isolated from an arsenic contaminated lands. Here, we have investigated its genetic composition and evolutionary history by using massively parallel sequencing and comparative analysis with other known Lysinibacillus genomes. Assembly of the sequencing reads revealed a genome of ~ 4.5 Mb in size encompassing ~ 80% of the chromosomal DNA. We found that the set of ordered contigs contains abundant regions of similarity with other Lysinibacillus genomes and clearly identifiable genome rearrangements. Furthermore, all genes of B1-CDA that were predicted be involved in its resistance to arsenic and/or other heavy metals were annotated. The presence of arsenic responsive genes was verified by PCR in vitro conditions. The findings of this study highlight the significance of this bacterium in removing arsenics and other toxic metals from the contaminated sources. The genetic mechanisms of the isolate could be used to cope with arsenic toxicity.

    Download full text (pdf)
    fulltext
  • 17.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro University.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, India.
    Jass, Jana
    Örebro University.
    Ghosh, Sibdas
    Iona College, New Rochelle, NY, USA.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Data in support of the comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics2015In: Data in Brief, ISSN 2352-3409, Vol. 5, p. 579-585Article in journal (Refereed)
    Abstract [en]

    This study is a part of our long term project on bioremediation of toxic metals and other pollutants for protection of human health and the environment from severe contamination. The information and results presented in this data article are based on both in vitro and in silico experiments. In vitro experiments were used to investigate the presence of arsenic responsive genes in a bacterial strain B1-CDA that is highly resistant to arsenics. However, in silico studies were used to annotate the function of the metal responsive genes. By using this combined study consisting of in vitro and in silico experiments we have identified and characterized specific genes from B1-CDA that can be used as a potential tool for removal of arsenics as well as other heavy metals from the contaminated environment.

    Download full text (pdf)
    fulltext
  • 18.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro Universtitet.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, India.
    Jass, Jana
    The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden.
    Hossain, Khaled
    Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.
    Alam Saud, Zahangir
    Department of Biochemistry & Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh.
    Saha, Ananda K.
    Department of Zoology, University of Rajshahi, Rajshahi, Bangladesh.
    Ghosh, Sibdas
    School of Arts and Science, Iona College, New Rochelle, New York, USA.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Bioremediation of hexavalent chromium (VI) by a soil borne bacterium, Enterobacter cloacae B2-DHA2015In: Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances and Environmental Engineering, ISSN 1093-4529, E-ISSN 1532-4117, Vol. 50, no 11, p. 1136-1147Article in journal (Refereed)
    Abstract [en]

    Chromium and chromium containing compounds are discharged into the nature as waste from anthropogenic activities, such as industries, agriculture, forest farming, mining and metallurgy. Continued disposal of these compounds to the environment leads to development of various lethal diseases in both humans and animals. In this paper, we report a soil borne bacterium, B2-DHA that can be used as a vehicle to effectively remove chromium from the contaminated sources. B2-DHA is resistant to chromium with a MIC value of 1000 µg/mL potassium chromate. The bacterium has been identified as a Gram negative, Enterobacter cloacae based on biochemical characteristics and 16S rRNA gene analysis. TOF-SIMS and ICP-MS analyses confirmed intracellular accumulation of chromium and thus its removal from the contaminated liquid medium. Chromium accumulation in cells was 320 µg/g of cells dry biomass after 120 h exposure and thus it reduced the chromium concentration in the liquid medium by as much as 81%. Environmental scanning electron micrograph revealed the effect of metals on cellular morphology of the isolates. Altogether, our results indicate that B2-DHA has the potential to reduce chromium significantly to safe levels from the contaminated environments and suggest the potential use of this bacterium in reducing human exposure to chromium, hence avoiding poisoning.

    Download full text (pdf)
    Rahman et al., 2015
  • 19.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Investigation on Arsenic-Accumulating and Arsenic-Transforming Bacteria for Potential Use in the Bioremediation of Arsenics2017In: Handbook of Metal-Microbe Interactions and Bioremediation / [ed] Surajit Das, Hirak Ranjan Dash, Boca Raton, FL: CRC Press, 2017, p. 509-519Chapter in book (Refereed)
    Abstract [en]

    In this chapter, arsenic-accumulating and arsenic- transformingbacterial strains that can be employed as a sourcefor cost-effective and eco-friendly bioremediation of arsenicsfrom contaminated environments have been reviewed. Thischapter demonstrates that many naturally occurring bacterialstrains like B1-CDA have the potential for reducing arseniccontent in contaminated sources to safe levels. Therefore,the socioeconomic impact of this kind of microorganisms ishighly significant for those countries, especially in the developingworld, where impoverished families and villages aremost impacted. Therefore, this discovery should be consideredto be the most significant factor in formulating nationalstrategies for effective poverty elimination. Besides humanarsenic contamination, these bacterial strains will also benefitlivestock and native animal species, and the outcome ofthese studies is vital not only for people in arsenic-affectedareas but also for human populations in other countries thathave credible health concerns as a consequence of arseniccontaminatedwater and foods.

  • 20.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Örebro universitet, Institutionen för naturvetenskap och teknik.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Jass, Jana
    Örebro universitet, Institutionen för naturvetenskap och teknik.
    Nawani, Neelu N.
    Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, India.
    Ghosh, Sibdas
    Iona College, New Rochelle, NY, USA.
    Saha, Ananda K.
    University of Rajshahi, Rajshahi, Bangladesh.
    Hossain, Khaled
    University of Rajshahi, Bangladesh.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Genome analysis of Enterobacter cloacae B2-DHA: A bacterium resistant to chromium and/or other heavy metalsManuscript (preprint) (Other academic)
  • 21.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Complete Genome Sequence of Enterobacter cloacae B2-DHA: a Chromium-Resistant Bacterium2016In: Genome Announcements, E-ISSN 2169-8287, Vol. 4, no 3, article id e00483-16Article in journal (Refereed)
    Abstract [en]

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size.

    Download full text (pdf)
    fulltext
    Download full text (pdf)
    fulltext
  • 22.
    Rahman, Aminur
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
    Olsson, Björn
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Jass, Jana
    The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
    Nawani, Neelu
    Microbial Diversity Research Centre, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune-411033, India.
    Ghosh, Sibdas
    School of Arts and Science, Iona College, New Rochelle, NY 10801, USA.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Genome Sequencing Revealed Chromium and Other Heavy Metal Resistance Genes in E. cloacae B2-Dha2017In: Journal of Microbial & Biochemical Technology, E-ISSN 1948-5948, Vol. 9, no 5, p. 191-199Article in journal (Refereed)
    Abstract [en]

    The previously described chromium resistant bacterium, Enterobacter cloacae B2-DHA, was isolated from leather manufacturing tannery landfill in Bangladesh. Here we report the entire genome sequence of this bacterium containing chromium and other heavy metal resistance genes. The genome size and the number of genes, determined by massive parallel sequencing and comparative analysis with other known Enterobacter genomes, are predicted to be 4.22 Mb and 3958, respectively. Nearly 160 of these genes were found to be involved in binding, transport, and catabolism of ions as well as efflux of inorganic and organic compounds. Specifically, the presence of two chromium resistance genes, chrR and chrA was verified by polymerase chain reaction. The outcome of this research highlights the significance of this bacterium in bioremediation of chromium and other toxic metals from the contaminated sources.

    Download full text (pdf)
    fulltext
  • 23.
    Yewale, Priti Prabhakar
    et al.
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Maharashtra, Pune, India.
    Rahman, Aminur
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nahar, Noor
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Saha, Anandakumar
    Department of Zoology, University of Rajshahi, Rajshahi, Bangladesh.
    Jass, Jana
    The Life Science Center, The School of Science and Technology, Örebro University, Örebro, Sweden.
    Mandal, Abul
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Nawani, Neelu N.
    Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India.
    Sources of Metal Pollution, Global Status, and Conventional Bioremediation Practices2017In: Handbook of Metal–Microbe Interactions and Bioremediation / [ed] Surajit Das, Hirak Ranjan Dash, Boca Raton, FL: CRC Press, 2017, p. 25-40Chapter in book (Refereed)
    Abstract [en]

    Pollution control has become a priority task for global regulatory authorities. The framing of regulations, guidelines, and implementation of pollution awareness and control programs has begun at a massive scale. Heavy metals that are one of the most challenging pollutants that affect humans, animals, plants, and the ecosystem health. The sources of different metals and their toxicities are described. Current approaches in bioremediation are addressed along with the challenges posed by them. Furthermore, recent developments in biotechnology that offer novel ways to recover metals from contaminated sites are discussed.

1 - 23 of 23
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf