Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hussain, Muhammad Anwar
    Linköping University, Department of Mathematics. Linköping University.
    Numerical Solution of a Nonlinear Inverse Heat Conduction Problem2010Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

     The inverse heat conduction problem also frequently referred as the sideways heat equation, in short SHE, is considered as a mathematical model for a real application, where it is desirable for someone to determine the temperature on the surface of a body. Since the surface itself is inaccessible for measurements, one is restricted to use temperature data from the interior measurements. From a  mathematical point of view, the entire situation leads to a non-characteristic Cauchy problem, where by using recorded temperature one can solve a well-posed nonlinear problem in the finite region for computing heat flux, and consequently obtain the Cauchy data [u, ux]. Further by using these data and by performing an appropriate method, e.g. a space marching method, one can eventually achieve the desired temperature at x = 0.

    The problem is severely ill-posed in the sense that the solution does not depend continuously on the data. The problem solved by two different methods, and for both cases we stabilize the computations by replacing the time derivative in the heat equation by a bounded operator. The first one, a spectral method based on finite Fourier space is illustrated to supply an analytical approach for approximating the time derivative. In order to get a better accuracy in the numerical computation, we use cubic spline function for approximating the time derivative in the least squares sense.

    The inverse problem we want to solve, by using Cauchy data, is a nonlinear heat conduction problem in one space dimension. Since the temperature data u = g(t) is recorded, e.g. by a thermocouple, it usually contains some perturbation in the data. Thus the solution can be severely ill-posed if the Cauchy data become very noisy. Two experiments are presented to test the proposed approach.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf