Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Mike
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland, SenSiC AB, Kista, Sweden .
    Bastuck, Manuel
    Saarland University, Lab for Measurement Technology, Germany.
    Huotari, Joni
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Lappalainen, Jyrki
    University of Oulu, Finland.
    Schuetze, Andreas
    Saarland University, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    SiC-FET sensors for selective and quantitative detection of VOCs down to ppb level2016In: Procedia Engineering, ISSN 1877-7058, E-ISSN 1877-7058, Vol. 168, p. 216-220Article in journal (Refereed)
    Abstract [en]

    With the increased interest in development of cheap, simple means for indoor air quality monitoring, and specifically in relation to certain well-known pollutant substances with adverse health effects even at very low concentrations, such as different Volatile Organic Compounds (VOCs), this contribution aims at providing an overview of the development status of the silicon carbide field effect transistor (SiC FET) based sensor platform for ppb level detection of VOCs. Optimizing the transducer design, the gas-sensitive material(s) composition, structure and processing, its mode of operation - applying temperature cycled operation in conjunction with multivariate data evaluation - and long-term performance it has been possible to demonstrate promising resultsregarding the sensor technology’s ability to achieve both single-digit ppb sensitivity towards e.g. naphthalene as well as selective detection of individual substances in a mixture of different VOCs.

  • 2.
    Bastuck, Manuel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Improving the Performance of Gas Sensor Systems with Advanced Data Evaluation, Operation, and Calibration Methods2019Doctoral thesis, monograph (Other academic)
    Abstract [en]

    In order to facilitate the widespread use of gas sensors, some challenges must still be overcome. Many of those are related to the reliable quantification of ultra-low concentrations of specific compounds in a background of other gases. This thesis focuses on three important items in the measurement chain: sensor material and operating modes, evaluation of the resulting data, and test gas generation for efficient sensor calibration.

    New operating modes and materials for gas-sensitive field-effect transistors have been investigated. Tungsten trioxide as gate oxide can improve the selectivity to hazardous volatile organic compounds like naphthalene even in a strong and variable ethanol background. The influence of gate bias and ultraviolet light has been studied with respect to the transport of oxygen anions on the sensor surface and was used to improve classification and quantification of different gases.

    DAV3E, an internationally recognized MATLAB-based toolbox for the evaluation of cyclic sensor data, has been developed and published as opensource. It provides a user-friendly graphical interface and specially tailored algorithms from multivariate statistics.

    The laboratory tests conducted during this project have been extended with an interlaboratory study and a field test, both yielding valuable insights for future, more complex sensor calibration. A novel, efficient calibration approach has been proposed and evaluated with ten different gas sensor systems. 

  • 3.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Saarland Univ, Germany.
    Baur, T.
    Saarland Univ, Germany.
    Richter, M.
    Bundesanstalt Mat Forsch and Prufung BAM, Germany.
    Mull, B.
    Bundesanstalt Mat Forsch and Prufung BAM, Germany; Fraunhofer Wilhelm Klauditz Inst, Germany.
    Schuetze, A.
    Saarland Univ, Germany.
    Sauerwald, T.
    Saarland Univ, Germany.
    Comparison of ppb-level gas measurements with a metal-oxide semiconductor gas sensor in two independent laboratories2018In: Sensors and actuators. B, Chemical, ISSN 0925-4005, E-ISSN 1873-3077, Vol. 273, p. 1037-1046Article in journal (Refereed)
    Abstract [en]

    In this work, we use a gas sensor system consisting of a commercially available gas sensor in temperature cycled operation. It is trained with an extensive gas profile for detection and quantification of hazardous volatile organic compounds (VOC) in the ppb range independent of a varying background of other, less harmful VOCs and inorganic interfering gases like humidity or hydrogen. This training was then validated using a different gas mixture generation apparatus at an independent lab providing analytical methods as reference. While the varying background impedes selective detection of benzene and naphthalene at the low concentrations supplied, both formaldehyde and total VOC can well be quantified, after calibration transfer, by models trained with data from one system and evaluated with data from the other system. The lowest achievable root mean squared errors of prediction were 49 ppb for formaldehyde (in a concentration range of 20-200 ppb) and 150 mu g/m(3) (in a concentration range of 25-450 mu g/m(3)) for total VOC. The latter uncertainty improves to 13 mu g/m(3) with a more confined model range of 220-320 mu g/m(3). The data from the second lab indicate an interfering gas which cannot be detected analytically but strongly influences the sensor signal. This demonstrates the need to take into account all sensor relevant gases, like, e.g., hydrogen and carbon monoxide, in analytical reference measurements.

  • 4.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. Saarland University, Germany.
    Baur, T.
    Lab Measurement Technology, Germany.
    Schutze, A.
    Lab Measurement Technology, Germany.
    Fusing Cyclic Sensor Data with Different Cycle Length2016In: 2016 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), IEEE , 2016, p. 72-77Conference paper (Refereed)
    Abstract [en]

    Cyclic modulation of sensor parameters can improve sensitivity and selectivity of gas sensors. If the modulated parameter influences the sens environment, several readings can be gained, eventually resulting in a multi-dimensional response which can be analyzed with, e.g., principal component analysis. In certain cases, e.g. temperature modulated gas sensors with different thermal time constants, the length of the used cycles, and, thus, the temporal resolution of the sensors can differ. As a consequence, different sensors can produce datasets with an unequal number of observations which, nevertheless, cover the same interval of time. In this work, we explore three different strategies which enable combination of those datasets in order to retain the maximum amount of information from two sensors when used in parallel. Simulated data show that simple combination of a short cycle with the last complete long cycle can improve correct classification rate by 15 percent points while maintaining the better temporal resolution. On the other hand, performance can be further increased at the expense of temporal resolution by adding either several of the short cycles, or their mean, to a long cycle, effectively reducing noise. The proposed combination strategies and their dependence on preprocessing are validated with a real dataset of two gas sensors. Overall, and taking into account differences in data performance for simulated and real data is observed.

  • 5.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Huotari, J.
    University of Oulu, Finland.
    Sauerwald, T.
    University of Saarland, Germany.
    Lappalainen, J.
    University of Oulu, Finland.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering. University of Oulu, Finland.
    Schuetze, A.
    University of Saarland, Germany.
    Exploring the selectivity of WO3 with iridium catalyst in an ethanol/naphthalene mixture using multivariate statistics2016In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 618, p. 263-270Article in journal (Refereed)
    Abstract [en]

    Temperature cycled operation and multivariate statistics have been used to compare the selectivity of two gate (i.e. sensitive) materials for gas-sensitive, silicon carbide based field effect transistors towards naphthalene and ethanol in different mixtures of the two substances. Both gates have a silicon dioxide (SiO2) insulation layer and a porous iridium (Ir) electrode. One of it has also a dense tungsten trioxide (WO3) interlayer between Ir and SiO2. Both static and transient characteristics play an important role and can contribute to improve the sensitivity and selectivity of the gas sensor. The Ir/SiO2 is strongly influenced by changes in ethanol concentration, and is, thus, able to quantify ethanol in a range between 0 and 5 ppm with a precision of 500 ppb, independently of the naphthalene concentrations applied in this investigation. On the other hand, this sensitivity to ethanol reduces its selectivity towards naphthalene, whereas Ir/WO3/SiO2 shows an almost binary response to ethanol. Hence, the latter has a better selectivity towards naphthalene and can quantify legally relevant concentrations down to 5 ppb with a precision of 2.5 ppb, independently of a changing ethanol background between 0 and 5 ppm. (C) 2016 Elsevier B.V. All rights reserved.

  • 6.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Puglisi, Donatella
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Lloyd Spetz, Anita
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Schuetze, A.
    University of Saarland, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Applied Sensor Science. Linköping University, Faculty of Science & Engineering.
    Characterizing the Influence of Gate Bias on Electrical and Catalytical Properties of a Porous Platinum Gate on Field Effect Gas Sensors2016In: 2016 IEEE SENSORS, IEEE , 2016Conference paper (Refereed)
    Abstract [en]

    In this work, we exposed an MIS capacitor with porous platinum as gate material to different concentrations of CO and NH3. Its capacitance and typical reaction products (water, CO2 and NO) were monitored at high and low oxygen concentration and different gate bias voltages. We found that the gate bias influences the switch-point of the binary CO response usually seen when either changing the temperature at constant gas concentrations or the CO/O-2 ratio at constant temperature. For NH3, the sensor response as well as product reaction rates increase with bias voltages up to 6 V. A capacitance overshoot is observed when switching on or off either gas at low gate bias, suggesting increasing oxygen surface coverage with decreasing gate bias.

  • 7.
    Bastuck, Manuel
    et al.
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering. University of Saarland, Germany.
    Reimringer, W.
    3S GmbH, Germany.
    Conrad, T.
    3S GmbH, Germany.
    Schuetze, A.
    University of Saarland, Germany.
    Dynamic multi-sensor operation and read-out for highly selective gas sensor systems2016In: PROCEEDINGS OF THE 30TH ANNIVERSARY EUROSENSORS CONFERENCE - EUROSENSORS 2016, ELSEVIER SCIENCE BV , 2016, Vol. 168, p. 1685-1688Conference paper (Refereed)
    Abstract [en]

    We describe hardware and algorithms which enable highly selective and sensitive operation of the two gas sensor types used in the SENSIndoor project. The resistance of a metal-oxide semiconductor (MOS) type can rise above 1 G Omega in temperature cycled operation (TCO), which is measured using a logarithmic amplifier. A silicon-carbide based, gas-sensitive field-effect transistor (SiC-FET) driven with a combination of TCO and gate-bias cycled operation (GBCO) is used as second, complimentary sensor. The cyclic sensor signals exhibit distinct shape changes depending on the gas present which is captured by pattern recognition. In this study we use Linear Discriminant Analysis (LDA) for discrimination and Partial Least Squares Regression (PLSR) for quantification of ppb concentrations of target VOCs in changing ppm concentrations of interfering gases for indoor air quality assessment. (C) 2016 The Authors. Published by Elsevier Ltd.

  • 8.
    Rodner, Marius
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Bastuck, Manuel
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering. Univ Saarland, Germany.
    Schuetze, Andreas
    Univ Saarland, Germany.
    Andersson, Mike
    Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
    Huotari, Joni
    Univ Oulu, Finland; Toptester Ltd, Finland.
    Puustinen, Jarkko
    Univ Oulu, Finland.
    Lappalainen, Jyrki
    Univ Oulu, Finland.
    Sauerwald, Tilman
    Univ Saarland, Germany.
    Enabling a new method of dynamic field-effect gas sensor operation through lithium-doped tungsten oxide2019In: JOURNAL OF SENSORS AND SENSOR SYSTEMS, ISSN 2194-8771, Vol. 8, no 2, p. 261-267Article in journal (Refereed)
    Abstract [en]

    To fulfil todays requirements, gas sensors have to become more and more sensitive and selective. Temperature-cycled operation has long been used to enhance the sensitivity and selectivity of metal-oxide semiconductor gas sensors and, more recently, silicon-carbide-based, gas-sensitive field-effect transistors (SiC-FETs). In this work, we present a novel method to significantly enhance the effect of gate bias on a SiC-FETs response, giving rise to new possibilities for static and transient signal generation and, thus, increased sensitivity and selectivity. A tungsten trioxide (WO3) layer is deposited via pulsed laser deposition as an oxide layer beneath a porous iridium gate, and is doped with 0.1 AT% of lithium cations. Tests with ammonia as a well-characterized model gas show a relaxation effect with a time constant between 20 and 30 s after a gate bias step as well as significantly increased response and sensitivity at +/- 2V compared to 0V. We propose an electric field-mediated change in oxygen surface coverage as the cause of this novel effect.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf