Change search
Refine search result
1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Substituent Effects in Molecular Ruthenium Water Oxidation Catalysts Based on Amide Ligands2017In: ChemCatChem, ISSN 1867-3880, E-ISSN 1867-3899, Vol. 9, no 9, p. 1583-1587Article in journal (Refereed)
    Abstract [en]

    The production of clean and sustainable energy is considered as one of the most urgent issues for our society. Mastering the oxidation of water to dioxygen is essential for the production of solar fuels. A study of the influence of the substituents on the catalytic activity of a series of mononuclear Ru complexes (2a-e) based on a tetradentate ligand framework is presented. At neutral pH, using [Ru(bpy)(3)](PF6)(3) (bpy=2,2'-bipyridine) as the terminal oxidant, a good correlation between the turnover frequency (TOF) and the Hammett sigma(meta) parameters was obtained. Additionally, a general pathway for the deactivation of Ru-based catalysts 2a-e during the catalytic oxidation of water through poisoning by carbon monoxide was demonstrated. These results highlight the importance of ligand design for fine-tuning the catalytic activity of water oxidation catalysts.

  • 2.
    Abdel-Magied, Ahmed F.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Arafa, Wael A. A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. University Fayoum, Egypt.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Bjorn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chemical and Photochemical Water Oxidation Mediated by an Efficient Single-Site Ruthenium Catalyst2016In: ChemSusChem, ISSN 1864-5631, E-ISSN 1864-564X, Vol. 9, no 24, p. 3448-3456Article in journal (Refereed)
    Abstract [en]

    Water oxidation is a fundamental step in artificial photosynthesis for solar fuels production. In this study, we report a single-site Ru-based water oxidation catalyst, housing a dicarboxylate-benzimidazole ligand, that mediates both chemical and light-driven oxidation of water efficiently under neutral conditions. The importance of the incorporation of the negatively charged ligand framework is manifested in the low redox potentials of the developed complex, which allows water oxidation to be driven by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). Furthermore, combined experimental and DFT studies provide insight into the mechanistic details of the catalytic cycle.

  • 3.
    Arafa, Wael A. A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Berends, Hans-Martin
    Messinger, Johannes
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity2014In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 16, no 24, p. 11950-11964Article in journal (Refereed)
    Abstract [en]

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O-2 and solar fuels, such as H-2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn-2 (II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.

  • 4. Das, Biswanath
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Demeshko, Serhiy
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Haukka, Matti
    Zeglio, Erica
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Meyer, Franc
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 34, p. 13289-13293Article in journal (Refereed)
    Abstract [en]

    The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+).

  • 5.
    Gustafson, Karl P. J.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Schluschass, Bastian
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-Erling
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam2017In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 7, no 1, p. 293-299Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis is an attractive strategy for converting solar energy into fuel. In this context, development of catalysts for oxidation of water to molecular oxygen remains a critical bottleneck. Herein, we describe the preparation of a well-defined nanostructured RuO2 catalyst, which is able to carry out the oxidation of water both chemically and photochemically. The developed heterogeneous RuO2 nanocatalyst was found to be highly active, exceeding the performance of most known heterogeneous water oxidation catalysts when driven by chemical or photogenerated oxidants.

  • 6.
    Iqbal, M. Naeem
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Abdelhamid, Hani Nasser
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Olsén, Peter
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shatskiy, Andrey
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mesoporous Ruthenium Oxide: A Heterogeneous Catalyst for Water Oxidation2017In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 11, p. 9651-9656Article in journal (Refereed)
    Abstract [en]

    Herein we report the synthesis of mesoporous ruthenium oxide (MP-RuO2) using a template-based approach. The catalytic efficiency of the prepared MP-RuO2 was compared to commercially available ruthenium oxide nanoparticles (C-RuO2) as heterogeneous catalysts for water oxidation. The results demonstrated superior performance of MP-RuO2 for oxygen evolution compared to the C-RuO2 with respect to recyclability, amount of generated oxygen, and stability over several catalytic runs.

  • 7.
    Johnston, Eric V
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Novel dinuclear Ru-complex for water oxidation2010In: Abstracts of Papers, 240th ACS National Meeting, Boston, MA, United States, August 22-26, 2010 (2010), American Chemical Society , 2010Conference paper (Other academic)
  • 8.
    Johnston, Eric V.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Shakeri, Mozaffar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Palmgren, Pål
    Eriksson, Kristofer
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Oscarsson, Sven
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Highly dispersed palladium nanoparticles on mesocellular foam: an efficient and recyclable heterogeneous catalyst for alcohol oxidation2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 39, p. 12202-12206Article in journal (Refereed)
  • 9. Karlsson, Erik A.
    et al.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Becerril, Valeria Saavedra
    Abrahamsson, Maria
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and electron transfer processes in a new family of coupled Mn2–Ru complexesManuscript (preprint) (Other academic)
  • 10.
    Karlsson, Erik A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Becerril, Valeria Saavedra
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Abrahamsson, Maria
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and Electron-Transfer Processes in a New Family of Ligands for Coupled Ru-Mn2 Complexes2014In: ChemPlusChem, ISSN 2192-6506, Vol. 79, no 7, p. 936-950Article in journal (Refereed)
    Abstract [en]

    A series of [Ru(bpy)(3)](2+)-type (bpy= 2,2'-bipyridine) photosensitisers have been coupled to a ligand for Mn, which is expected to give a dinuclear complex that is active as a water oxidation catalyst. Unexpectedly, photophysical studies showed that the assemblies had very short lived excited states and that the decay patterns were complex and strongly dependent on pH. One dyad was prepared that was capable of catalysing chemical water oxidation by using [Ru(bpy)(3)](3+) as an oxidant. However, photochemical water oxidation in the presence of an external electron acceptor failed, presumably because the short excited-state lifetime precluded initial electron transfer to the added acceptor. The photophysical behaviour could be explained by the presence of an intricate excited-state manifold, as also suggested by time-dependent DFT calculations.

  • 11.
    Karlsson, Erik A.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Hansson, Örjan
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Photosensitized water oxidation by use of a bioinspired manganese catalyst2011In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 50, no 49, p. 11715-11718Article in journal (Refereed)
  • 12.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bio-inspired metal complexes: Their synthesis and application in light-driven water oxidation and organic transformations2010Licentiate thesis, comprehensive summary (Other academic)
  • 13.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Development and Mechanistic Studies of Molecularly Defined Water Oxidation Catalysts: Catalysts for a Green and Sustainable Future2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis deals with the development of complexes that are active catalysts for H2O oxidation. Promoting proton-coupled electron transfer has been a highly important feature in the development of these catalysts.

    The first part deals with the modification of ligand frameworks for the development of a ruthenium complex capable of withstanding the highly oxidizing conditions required for H2O oxidation. 

    The second part of the thesis describes the development of two single-site ruthenium(III) complexes, housing two meridionally coordinating tridentate benzimidazole ligands. Studies on these complexes revealed that they can mediate H2O oxidation, both by the use of a chemical oxidant and photochemically, and that the ligand frameworks were important in promoting proton-coupled electron transfer events.

    In the third part, systematic modifications are introduced into one of the catalysts developed in the second part of the thesis. All of the complexes were shown to be active water oxidation catalysts (WOCs), and kinetic studies confirmed that all catalysts displayed a first-order dependence on catalyst concentration, thereby validating that H2O oxidation occurs on a single metal site. By using linear free-energy relationships it was possible to elucidate the unusual behavior exerted by the ligand framework during the catalytic cycle.

    The fourth part concerns the development of a ruthenium(III) WOC, containing a tetradentate bioinspired ligand architecture, and its deactivation pathway during H2O oxidation catalysis. This revealed an unexplored, and perhaps general, deactivation pathway for ruthenium-based WOCs. Evidence was also found that the ruthenium WOC reaches a high-valent ruthenium(VI) state which is the active species in H2O oxidation.

    Finally, the fifth and last part deals with the development of a dinuclear manganese complex. Utilizing a bioinspired, highly functionalized ligand, enabled the formation of the first homogeneous manganese-based WOC capable of promoting catalytic H2O oxidation with one-electron oxidants.

  • 14.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications2017In: ACS Catalysis, ISSN 2155-5435, E-ISSN 2155-5435, Vol. 7, no 8, p. 4999-5022Article in journal (Refereed)
    Abstract [en]

    During the past decade, visible light photo catalysis has become a powerful synthetic platform for promoting challenging bond constructions under mild reaction conditions. These photocatalytic systems rely on harnessing visible light energy for synthetic purposes through the generation of reactive but controllable free radical species. Recent progress in the area of visible light photocatalysis has established it as an enabling catalytic strategy for the mild and selective generation of nitrogen-centered radicals. The application of visible light for photocatalytic activation of amides, hydrazones, and imides represents a valuable approach for facilitating the formation of nitrogen-centered radicals. Within the span of only a couple of years, significant progress has been made for expediting the generation of amidyl, hydrazonyl, and imidyl radicals from a variety of precursors. This Perspective highlights the recent advances in visible light-mediated generation of these radicals. A particular emphasis is placed on the unique ability of visible light photocatalysis in accessing elusive reaction manifolds for the construction of diversely functionalized nitrogen-containing motifs and as a platform for nontraditional bond disconnections in contemporary synthetic chemistry.

  • 15.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Shariatgorji, Mohammadreza
    Ilag, Leopold
    Stockholm University, Faculty of Science, Department of Analytical Chemistry.
    Hansson, Örjan
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Light-Induced Water Oxidation by a Ru-complex Containing a Bio-Inspired Ligand2011In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 17, no 28, p. 7953-7959Article in journal (Refereed)
    Abstract [en]

    The new Ru-complex 8 containing the bio-inspired ligand 7 was successfully synthesized and characterized. Complex 8 could efficiently catalyze water oxidation using CeIV and RuIII as chemical oxidants. More importantly, this complex has sufficiently low overpotential to utilize ruthenium polypyridyl-type complexes as photosensitizers.

  • 16.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Artificial Photosynthesis: Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation2014In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 47, no 1, p. 100-111Article, review/survey (Refereed)
    Abstract [en]

    Human society faces a fundamental challenge as energy consumption is projected to increase due to population and economic growth as fossil fuel resources decrease. Therefore the transition to alternative and sustainable energy sources is of the Utmost importance. The conversion of solar energy into chemical energy, by splitting H2O to generate molecular O-2 and H-2, could contribute to solving the global energy problem. Developing such a system will require the combination of several complicated processes, such as light-harvesting, charge separation, electron transfer, H2O oxidation, and reduction of the generated protons. The primary processes of charge separation and catalysis, which occur in the natural photosynthetic machinery, provide us with an excellent blueprint for the design of such systems. This Account describes our efforts to construct supramolecular assemblies capable of carrying out photoinduced electron transfer and to develop artificial water oxidation catalysts (WOCs). Early work in our group focused on linking a ruthenium chromophore to a manganese-based oxidation catalyst. When we incorporated a tyrosine unit into these supramolecular assemblies, we could observe fast intramolecular electron transfer from the manganese centers, via the tyrosine moiety, to the photooxidized ruthenium center, which clearly resembles the processes occurring in the natural system. Although we demonstrated multi-electron transfer in our artificial systems, the bottleneck proved to be the stability of the WOCs. Researchers have developed a number of WOCs, but the majority can only catalyze H2O oxidation in the presence of strong oxidants such as Ce-IV, which is difficult to generate photochemically. By contrast, illumination of ruthenium(II) photosensitizers in the presence of a sacrificial acceptor generates [Ru(bpy)(3)](3+)-type oxidants. Their oxidation potentials are significantly lower than that of Ce-IV, but our group recently showed that incorporating negatively charged groups into the ligand backbone could decrease the oxidation potential of the catalysts and, at the same time, decrease the potential for H2O oxidation. This permitted us to develop both ruthenium- and manganese-based WOCs that can operate under neutral conditions, driven by the mild oxidant [Ru(bpy)(3)](3+). Many hurdles to the development of viable systems for the production of solar fuels remain. However, the combination of important features from the natural photosynthetic machinery and novel artificial components adds insights into the complicated catalytic processes that are involved in splitting H2O.

  • 17.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular Single-site Ruthenium Complexes Containing a Basic Site: The Use of Structure-activity RelationshipsManuscript (preprint) (Other academic)
    Abstract [en]

    A series of single-site ruthenium(III) complexes (2a-d) were synthesized and characterized, and employed in the oxidation of H2O. A linear free-energy relationship study was conducted in order to establish a correlation between the electrochemical properties and the electronic parameters of the introduced substituents in complexes 2a-d.

  • 18.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ghanem, Shams
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure-activity relationships and quantum chemical calculations2016In: Catalysis Science & Technology, ISSN 2044-4753, E-ISSN 2044-4761, Vol. 6, no 5, p. 1306-1319Article in journal (Refereed)
    Abstract [en]

    Robust catalysts that mediate H2O oxidation are of fundamental importance for the development of novel carbon-neutral energy technologies. Herein we report the synthesis of a group of single-site Ru complexes. Structure-activity studies revealed that the individual steps in the oxidation of H2O depended differently on the electronic properties of the introduced ligand substituents. The mechanistic details associated with these complexes were investigated experimentally along with quantum chemical calculations. It was found that O-O bond formation for the developed Ru complexes proceeds via high-valent Ru-VI species, where the capability of accessing this species is derived from the non-innocent ligand architecture. This cooperative catalytic involvement and the ability of accessing Ru-VI are intriguing and distinguish these Ru catalysts from a majority of previously reported complexes, and might generate unexplored reaction pathways for activation of small molecules such as H2O.

  • 19.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Verho, Oscar
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation2014In: Chemical Reviews, ISSN 0009-2665, E-ISSN 1520-6890, Vol. 114, no 24, p. 11863-12001Article, review/survey (Refereed)
  • 20.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Water Oxidation by Ruthenium Complexes Containing Negatively Charged Ligand Frameworks2016In: The chemical record, ISSN 1527-8999, E-ISSN 1528-0691, Vol. 16, no 2, p. 940-963Article in journal (Refereed)
    Abstract [en]

    Artificial photosynthesis represents an attractive way of converting solar energy into storable chemical energy. The H2O oxidation half-reaction, which is essential for producing the necessary reduction equivalents, is an energy-demanding transformation associated with a high kinetic barrier. Herein we present a couple of efficient Ru-based catalysts capable of mediating this four-proton-four-electron oxidation. We have focused on the incorporation of negatively charged ligands, such as carboxylate, phenol, and imidazole, into the catalysts to decrease the redox potentials. This account describes our work in designing Ru catalysts based on this idea. The presence of the negatively charged ligands is crucial for stabilizing the metal centers, allowing for light-driven H2O oxidation. Mechanistic details associated with the designed catalysts are also presented.

  • 21.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 37, p. 14421-14461Article in journal (Refereed)
    Abstract [en]

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  • 22.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences .
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Tailor-Made Molecular Ruthenium Catalyst for the Oxidation of Water and Its Deactivation through Poisoning by Carbon Monoxide2013In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 52, no 15, p. 4189-4193Article in journal (Refereed)
  • 23.
    Kärkäs, Markus D.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karim, Shams R.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Tobias
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Privalov, Timofei
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Water Oxidation by Single-Site Ruthenium Complexes: Using Ligands as Redox and Proton Transfer Mediators2012In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 51, no 46, p. 11589-11593Article in journal (Refereed)
  • 24.
    Laine, Tanja M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Huazhong University of Science & Technology, People's Republic of China.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A Dinuclear Ruthenium-Based Water Oxidation Catalyst: Use of Non-Innocent Ligand Frameworks for Promoting Multi-Electron Reactions2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 28, p. 10039-10048Article in journal (Refereed)
    Abstract [en]

    Insight into how H2O is oxidized to O-2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar-to-fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru-based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high-resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non-innocent behavior, in which metal-ligand cooperation is an important part during the four-electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non-innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O.

  • 25.
    Laine, Tanja M.
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Liao, Rong-Zhen
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Huazhong University of Science & Technology, People's Republic of China.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Efficient photochemical water oxidation by a dinuclear molecular ruthenium complex2015In: Chemical Communications, ISSN 1359-7345, E-ISSN 1364-548X, Vol. 51, no 10, p. 1862-1865Article in journal (Refereed)
    Abstract [en]

    Herein is described the preparation of a dinuclear molecular Ru catalyst for H2O oxidation. The prepared catalyst mediates the photochemical oxidation of H2O with an efficiency comparable to state-of-the-art catalysts.

  • 26.
    Lee, Bao-Lin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Karlsson, Erik A.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Johnston, Eric
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Das, Biswanath
    Nordlander, Ebbe
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Light-induced water oxidation by a dinuclear iron-based molecular catalystManuscript (preprint) (Other academic)
  • 27.
    Lee, Bao-Lin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Inge, Andrew K.
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Tran, Lien-Hoa
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Xu, Yunhua
    Hansson, Örjan
    Zou, Xiaodong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Synthesis and characterization of oligonuclear Ru, Co, and Cu oxidation catalysts2010In: European Journal of Inorganic Chemistry, ISSN 1434-1948, E-ISSN 1099-1948, no 34, p. 5462-5470Article in journal (Refereed)
    Abstract [en]

    In this work, we report the preparation and crystal structures of three new oligonuclear complexes, Ru-2(bbpmp)(mu-OAc)(3) (4), [Co-2(bbpmp)(mu-OAc)(mu-OMe)](PF6) (5), [Cu-4(Hbbpmp)(2)(mu-OAc)(H2O)(2)](OAc)(PF6)(2) (6) {H(3)bbpmp = 2,6-bis[(2-hydroxybenzyl)-(2-pyridylmethyl)aminomethyl]-4-methylphenol (3)}. The structures of the complexes were determined by single-crystal X-ray diffraction. The oxidation states of ruthenium, cobalt and copper in the complexes are +3, +3 and +2, respectively. In 4 and 5, Ru-III and Co-III are coordinated to four oxygen and two nitrogen atoms in an octahedral geometry, while in 6, Cu-II adopts both octahedral (CuN2O4) and square-pyramidal (CuN2O3) geometry. The potential of the three complexes as oxidation catalysts has been investigated.

  • 28.
    Liao, Rong-Zhen
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lee, Bao-Lin
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Photosystem II Like Water Oxidation Mechanism in a Bioinspired Tetranuclear Manganese Complex2015In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 54, no 1, p. 342-351Article in journal (Refereed)
    Abstract [en]

    The synthesis of Mn-based catalysts to mimic the structural and catalytic properties of the oxygen-evolving complex in photosystem II is a long-standing goal for researchers. An interesting result in this field came with the synthesis of a Mn complex that enables water oxidation driven by the mild single-electron oxidant [Ru(bpy)(3)](3+). On the basis of hybrid density functional calculations, we herein propose a water oxidation mechanism for this bioinspired Mn catalyst, where the crucial O-O bond formation proceeds from the formal Mn-4(IV,IV,IV,V) state by direct coupling of a Mn-IV-bound terminal oxyl radical and a di-Mn bridging oxo group, a mechanism quite similar to the presently leading suggestion for the natural system. Of importance here is that the designed ligand is shown to be redox-active and can therefore store redox equivalents during the catalytic transitions, thereby alleviating the redox processes at the Mn centers.

  • 29.
    Rabten, Wangchuk
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Liao, Rong-Zhen
    Tinnis, Fredrik
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Siegbahn, Per E. M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalytic Water Oxidation by a Molecular Ruthenium Complex: Unexpected Generation of a Single-Site Water Oxidation Catalyst2015In: Inorganic Chemistry, ISSN 0020-1669, E-ISSN 1520-510X, Vol. 54, no 10, p. 4611-4620Article in journal (Refereed)
    Abstract [en]

    The increasing energy demand calls for the development of sustainable energy conversion processes. Here, the splitting of H2O to O-2 and H-2, or related fuels, constitutes an excellent example of solar-to-fuel conversion schemes. The critical component in such schemes has proven to be the catalyst responsible for mediating the four-electron oxidation of H2O to O-2. Herein, we report on the unexpected formation of a single-site Ru complex from a ligand envisioned to accommodate two metal centers. Surprising N-N bond cleavage of the designed dinuclear ligand during metal complexation resulted in a single-site Ru complex carrying a carboxylate amide motif. This ligand lowered the redox potential of the Ru complex sufficiently to permit H2O oxidation to be carried out by the mild one-electron oxidant [Ru(bpy)(3)](3+) (bpy = 2,2'-bipyridine). The work thus highlights that strongly electron-donating ligands are important elements in the design of novel, efficient H2O :oxidation catalysts.

  • 30.
    Rabten, Wangchuk
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). China University of Geosciences, China.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Peking University, China.
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    A ruthenium water oxidation catalyst based on a carboxamide ligand2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 8, p. 3272-3276Article in journal (Refereed)
    Abstract [en]

    Herein is presented a single-site Ru complex bearing a carboxamide-based ligand that efficiently manages to carry out the fourelectron oxidation of H2O. The incorporation of the negatively charged ligand framework significantly lowered the redox potentials of the Ru complex, allowing H2O oxidation to be driven by the mild oxidant [Ru(bpy)(3)](3+). This work highlights that the inclusion of amide moieties into metal complexes thus offers access to highly active H2O oxidation catalysts.

  • 31.
    Shatskiy, Andrey
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Lomoth, Reiner
    Abdel-Magied, Ahmed F.
    Stockholm University, Faculty of Science, Department of Organic Chemistry. Nuclear Materials Authority, Egypt.
    Rabten, Wangchuk
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Laine, Tanja M.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Chen, Hong
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). KTH Royal Institute of Technology, Sweden.
    Sun, Junliang
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Andersson, Pher G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Catalyst-solvent interactions in a dinuclear Ru-based water oxidation catalyst2016In: Dalton Transactions, ISSN 1477-9226, E-ISSN 1477-9234, Vol. 45, no 47, p. 19024-19033Article in journal (Refereed)
    Abstract [en]

    Photocatalytic water oxidation represents a key process in conversion of solar energy into fuels and can be facilitated by the use of molecular transition metal-based catalysts. A novel straightforward approach for covalent linking of the catalytic units to other moieties is demonstrated by preparation of a dinuclear complex containing two [Ru(pdc)(pic)(3)]-derived units (pdc = 2,6-pyridinedicarboxylate, pic = 4-picoline). The activity of this complex towards chemical and photochemical oxidation of water was evaluated and a detailed insight is given into the interactions between the catalyst and acetonitrile, a common co-solvent employed to increase solubility of water oxidation catalysts. The solvent-induced transformations were studied by electrochemical and spectroscopic techniques and the relevant quantitative parameters were extracted.

  • 32.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Dilenstam, Marléne D. V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Kärkäs, Markus
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Application and mechanistic studies of a water-oxidation catalyst in alcohol oxidation by employing oxygen-transfer reagents2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 52, p. 16947-16954Article in journal (Refereed)
    Abstract [en]

    By using a dimeric ruthenium complex in combination with tert-butyl hydrogen peroxide (TBHP) as stoichiometric oxidant, a mild and efficient protocol for the oxidation of secondary benzylic alcohols was obtained, thereby giving the corresponding ketones in high yields within 4 h. However, in the oxidation of aliphatic alcohols, the TBHP protocol suffered from low conversions owing to a competing Ru-catalyzed disproportionation of the oxidant. Gratifyingly, by switching to Oxone (2 KHSO5KHSO4K2SO4 triple salt) as stoichiometric oxidant, a more efficient and robust system was obtained that allowed for the oxidation of a wide range of aliphatic and benzylic secondary alcohols, giving the corresponding ketones in excellent yields. The mechanism for these reactions is believed to involve a high-valent RuV–oxo species. We provide support for such an intermediate by means of mechanistic studies.

  • 33.
    Verho, Oscar
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Torbjörn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Johnston, Eric V.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Gustafson, Karl P. J.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Tai, Cheuk-Wai
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Svengren, Henrik
    Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).
    Kärkäs, Markus D.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Bäckvall, Jan-E.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Åkermark, Björn
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Well-Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water2015In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 21, no 15, p. 5909-5915Article in journal (Refereed)
    Abstract [en]

    Herein, we describe the use of Pd nanoparticles immobilized on an amino-functionalized siliceous mesocellular foam for the catalytic oxidation of H2O. The Pd nanocatalyst proved to be capable of mediating the four-electron oxidation of H2O to O-2, both chemically and photochemically. The Pd nanocatalyst is easy to prepare and shows high chemical stability, low leaching, and recyclability. Together with its promising catalytic activity, these features make the Pd nanocatalyst of potential interest for future sustainable solar-fuel production.

1 - 33 of 33
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf