Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gyldberg, Ellinor
    et al.
    Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Statistics.
    Bark, Henrik
    Type 1 error rate and significance levels when using GARCH-type models2019Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The purpose of this thesis is to test whether the probability of falsely rejecting a true null hypothesis of a model intercept being equal to zero is consistent with the chosen significance level when modelling the variance of the error term using GARCH (1,1), TGARCH (1,1) or IGARCH (1,1) models. We test this by estimating “Jensen’s alpha” to evaluate alpha trading, using a Monte Carlo simulation based on historical data from the Standard & Poor’s 500 Index and stocks in the Dow Jones Industrial Average Index. We evaluate over simulated daily data ranging over periods of 3 months, 6 months, and 1 year. Our results indicate that the GARCH and IGARCH consistently reject a true null hypothesis less often than the selected 1%, 5%, or 10%, whereas the TGARCH consistently rejects a true null more often than the chosen significance level. Thus, there is a risk of incorrect inferences when using these GARCH-type models.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf