Change search
Refine search result
1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Geometry Based Design Automation: Applied to Aircraft Modelling and Optimization2012Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Product development processes are continuously challenged by demands for increased efficiency. As engineering products become more and more complex, efficient tools and methods for integrated and automated design are needed throughout the development process. Multidisciplinary Design Optimization (MDO) is one promising technique that has the potential to drastically improve concurrent design. MDO frameworks combine several disciplinary models with the aim of gaining a holistic perspective of a system, while capturing the synergies between different subsystems. Among all disciplines, the geometric model is recognized as playing a key role, because it collects most of the data required to any other disciplinary analysis. In the present thesis, methodologies to enable multidisciplinary optimization in early aircraft design phases are studied. In particular, the research aims at putting the CAD geometric model in the loop. This requires the ability to automatically generate or update the geometric model, here referred to as geometry-based design automation.

    The thesis proposes the use of Knowledge Based Engineering (KBE) techniques to achieve design reuse and automation. In particular, so called High Level CAD templates (HLCts) are suggested to automate geometry generation and updates. HLCts can be compared to parametric LEGO® blocks containing a set of design and analysis parameters. These are produced and stored in libraries, giving engineers or a computer agent the possibility to first topologically select the templates and then modify the shape of each template parametrically.

    Since parameterization is central to modelling by means of HLCts, a thorough analysis of the subject is also performed. In most of the literature on MDO and KBE two recurring requirements concerning the geometrical model are expressed: the model should be flexible and robust. However, these requirements have never been properly formulated or defined. Hence, in the thesis a mathematical formulation for geometry model robustness and flexibility are proposed. These formulations ultimately allow the performance of geometric models to be precisely measured and compared.

    Finally, a prototyping and validation process is presented. The aim is to quickly and cost-effectively validate analytical results from an MDO process. The proposed process adopts different manufacturing techniques depending on the size and purpose of the intended prototype. In the last part of the thesis, three application examples are presented. The examples are chosen from research projects that have been carried out at Linköping University and show how the proposed theoretical results have been successfully employed in practice.

  • 2.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design . Linköping University, The Institute of Technology.
    On Aircraft Conceptual Design: A Framework for Knowledge Based Engineering and Design Optimization2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    This thesis presents a design framework where analytical tools are linked together and operated from an efficient system level interface. The application field is aircraft conceptual design. Particular attention has been paid to CAD system integration and design optimization.

    Aircraft design is an inherently multidisciplinary process. The goal is to search for the design that, in the best of possible ways, fulfills the requirements. It is therefore desirable to be able to effectively investigate and analyze solutions from a variety of points of view, weighting together the results and gathering a general figure of merit. At the same time, increasing competition on a global market forces to shorten the design process and to reduce costs. Thus a system that allows a tight and efficient integration of different disciplines and improving data flow and storage plays a key role.

    Integrating a CAD system to the framework is of central relevance. The geometrical model includes most of the information; specific data, required to carry out particular analysis, can be extracted from it. This is possible adopting parametric associative models that are controlled from a spreadsheet user interface. Strategies for building CAD models with a very high degree of flexibility are presented. Not only the external shape can be changed, but also the internal structure can be completely modified. Structural elements can be added or removed, and their position and shaping changed.

    In this work the design of an Unmanned Aerial Vehicle is used as test case for comparing three different optimization algorithms. The presented framework is also used for automatically design Micro Aerial Vehicles, starting from a short list of requirements and ending with a physical prototype produced by a rapid prototyping machine.

  • 3.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Development of a subscale flight testing platform for a generic future fighter2010Conference paper (Refereed)
    Abstract [en]

    One branch of the current research in aircraft design at Linköping University is focused on fast concept evaluation in early design stages. This covers multidisciplinary optimization using tools of different level of complexity and low-cost subscale flight testing. In some cases a flight test will provide more answers than several computations ever could. In order to achieve this goal a methodology is required to allow fast creation of subscale flying concepts and to obtain as much reliable information as possible from the tests. The methodology is currently being developed. One important part of it is the scaling methodology and the imposed requirements on manufacturing. The present paper presents the latest subscale demonstrator from Linköping University that has been built as part of the study initiated by the Swedish Material Board on a Generic Future Fighter aircraft.

  • 4.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design . Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems . Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Machine Design . Linköping University, The Institute of Technology.
    A Framework for Aerodynamic and Structural Optimization in Conceptual Design2007In: 25th AIAA Applied Aerodynamics Conference, 25-28 June, Miami, FL, USA, AIAA , 2007, p. 4061-Conference paper (Other academic)
    Abstract [en]

    Aircraft design is an inherently multidisciplinary activity that requires different models and tools for various aspects of the design. At Linköping University a novel design framework is being developed to support the initial conceptual design phase of a new aircraft. In this work main attention has been paid to wing design, with respect to aerodynamic efficiency and loads, and to structural analysis. By linking together various modules via a user-friendly interface based on a spreadsheet, the framework allows multidisciplinary analysis and optimizations to be carried out. This paper will present the framework, give an overview of its development status and give an indication on the future work.

  • 5.
    Amadori, Kristian
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Machine Design.
    Jouannet, Christopher
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems.
    Krus, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Machine Design.
    Aircraft Conceptual Design Optimization2008In: International Congress of the Aeronautical Sciences ICAS,2008, Stockholm, Sweden: ICAS , 2008Conference paper (Refereed)
    Abstract [en]

    Aircraft design is an inherently multidisciplinary activity that requires different models and tools for various aspects of the design. At Linköping University a novel design framework is being developed to support the initial conceptual design phase of new aircraft. By linking together various modules via a userfriendly spreadsheet interface, the framework allows multidisciplinary analysis and optimizations to be carried out. The geometrical model created with a high-end CAD system, contains all the available information on the product and thus it plays a central role in the framework. In this work great attention has been paid to techniques that allow creating robust yet highly flexible CAD models. Two different case studies are presented. The first one is a hypothetic wing-box design that is studied with respect to aerodynamic efficiency and loads, and to structural analysis. In this study two approaches were compared. In one case the wing-box design was optimized with a fixed number of structural elements, where only dimensions and position were allowed to change. Then the same wing-box was analyzed allowing also the number of structural elements to vary. Thus only the parts that are required are left and a more efficient design can be obtained. In the second case study a mission simulation is performed on a UAV-type aircraft. Required data for the simulation are gathered from the CAD model and from aerodynamic analysis carried out with PANAIR, a high order panel code. The obtained data are then used as inputs parameters for flight simulation in order to determined hydraulic systems characteristics.  

  • 6.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Use of Panel Code Modeling in a Framework for Aircraft Concept Optimization2006In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 6-8 September, Portsmouth, Virginia, USA, 2006, p. 7084-Conference paper (Other academic)
    Abstract [en]

     

     

    In this study the use of a high-order panel code within a framework for aircraft concept design is discussed. The framework is intended to be a multidisciplinary optimization tool to be adopted from the very beginning of the conceptual design phase in order to define and refine the aircraft design, with respect to its aerodynamic, stability and control, structure and basic aircraft systems. The presented work is aimed at developing a module for aerodynamic analysis of concepts as a basis for a direct search optimization of the concept layout. The design criterion, used in the example presented here, is to minimize the maximum take-off weight required to fulfil the mission. Classic and simple equations are used together with the data generated by the panel code solver to calculate the aircraft’s performances. Weights are calculated by means of statistical group weight equations, but the weight could also be calculated from a CAD-model. The design of an Unmanned Combat Air Vehicle is used as test case for three different optimization algorithms: one gradient method based (Fmincon), one non-gradient based (Complex) and one Genetic Algorithm (GA). Comparison of results and performances shows that the Genetic Algorithm is best fitted for the specific problem, having the by far best hit rate, even if it is at a cost of longer computing time. The Complex algorithm requires less iterations and is also able to find the optimum solution, but with a worse hit rate, while Fmincon can not reach to a global optimum. The suggested optimized configuration for the aircraft is very similar to the Boeing X-45C and Northrop Grumman X-47B.

  • 7.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Design Automation Framework for Micro Air Vehicles2009Conference paper (Other academic)
    Abstract [en]

    At Linköping University work has been done to automate the design process of Micro or Mini Air Vehicles. A design optimization framework that links together a CAD system for airframe design and panel code for aerodynamic design has been developed. This paper describes the experience made so far, and demonstrates a case study on fully automated design where a 3D printer is used for manufacturing.

  • 8.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Automated Design and Fabrication of Micro Air Vehicles2011In: Journal of Aerospace Engineering, ISSN 0893-1321, E-ISSN 1943-5525, Vol. 226, no 10, p. 1271-1282Article in journal (Refereed)
    Abstract [en]

    A methodology for an automated design and fabrication of micro-air vehicles (MAVs) is presented. A design optimization framework has been developed that interfaces several software systems to generate MAVs to optimally fulfil specific mission requirements. By means of amulti-objective genetic algorithm, families of MAVs are tailored with respect to objectives such as weight and endurance. The framework takes into consideration the airframe and aerodynamic design as well as the selection and positioning of internal components. The selection of propulsion system components is made from a database of off-the-shelf components. In combination with a three-dimensional printer, physical prototypes can be quickly manufactured. A validation of the framework results from flight tests of a real MAV is also presented.

  • 9.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Evaluation of Automatically Designed Micro Air Vehicles and Flight Testing2010Conference paper (Refereed)
    Abstract [en]

    The presented work is centered on the evaluation of Micro or Mini Air Vehicles (MAV) that have been automatically designed and manufactured. An in-house developed design framework uses several coupled computer software’s to generate the geometric design in CAD, a well as list of off the shelf components for the propulsion system, and computer code for autonomous flight ready to upload in the intended autopilot. The paper describes the experiences made so far regarding automation of the design process and of manufacturing. Furthermore, it presents results from evaluation and analysis of the optimization algorithm and flight testing, and from continuing work with the framework to achieve deeper understanding of the process and to fine-tune the design automation performance. The flight data is correlated to the predicted performances to validate the models and design process.

  • 10.
    Amadori, Kristian
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Machine Design .
    Lundén, Björn
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Machine Design.
    Krus, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Machine Design.
    Using CAD-Tools and Aerodynamic Codes in a Distributed Conceptual Design Framework2007In: Aerospace Sciences Meeting and Exhibit,2007, USA: AIAA , 2007Conference paper (Refereed)
    Abstract [en]

    Aircraft design is an inherently multi-disciplinary activity that requires different models and tools for various aspects of the design. At Linköping University a novel design framework is being developed to support the initial conceptual design phase of a new aircraft. Different modules are included, each one addressed to analyze and evaluate different aspects of the airplane, such as its aerodynamics, its weight and structure, its sub systems and its performances. All modules are easily accessible from a user-friendly interface based on an Excel spreadsheet. The link between all modules is based on Service Oriented Architecture (SOA) and allows both distribution and integration of all functions. This paper will present the framework, give an overview of its development status and give an indication on the future work.

  • 11.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Multidisciplinary Optimization of Wing Structure Using Parametric Models2013Conference paper (Other academic)
    Abstract [en]

    Aircraft design is an inherently multidisciplinary activity that requires integrating different models and tools to reach a well-balanced and optimized product. At Linköping University a design framework is being developed to support the initial design space exploration and the conceptual design phase. Main characteristics of the framework are its flexible database in XML format, together with close integration of automated CAD and other tools, which allows the developed geometry to be directly used in the subsequent preliminary design phase. In particular, the aim of the proposed work is to test the framework by designing, optimizing and studying a transport aircraft wing with respect to aerodynamic, geometry, structural and accessability constraints. The project will provide an initial assessment of the capability of the framework, both in terms of processing speed and accuracy of the results.

  • 12.
    Amadori, Kristian
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Tarkian, Mehdi
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Flexible and Robust CAD Models for Design Automation2012In: Advanced Engineering Informatics, ISSN 1474-0346, E-ISSN 1873-5320, Vol. 26, no 2, p. 180-195Article in journal (Refereed)
    Abstract [en]

    This paper explores novel methodologies for enabling Multidisciplinary Design Optimization (MDO) of complex engineering products. To realize MDO, Knowledge Based Engineering (KBE) is adopted with the aim of achieving design reuse and automation. The aim of the on-going research at Linköping University is to shift from manual modelling of disposable geometries to Computer Aided Design (CAD) automation by introducing generic high-level geometry templates. Instead of repeatedly modelling similar instances of objects, engineers should be able to create more general models that can represent entire classes of objects. The proposed methodology enables utilization of commercial design tools, hence taking industrial feasibility into consideration. High Level CAD templates (HLCt) will be proposed and discussed as the building blocks of flexible and robust CAD models, which in turn enables high-fidelity geometry in the MDO loop. Quantification of the terms flexibility and robustness is also presented, providing a means to measure the quality of the geometry models. Finally, application examples are presented in which the outlined framework is evaluated. The applications have been chosen from three ongoing research projects aimed at automating the design of transport aircraft, industrial robots, and micro air vehicles.

  • 13.
    Jouannet, Christopher
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Staack, Ingo
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Subscale flight testing used in conceptual design2012In: AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, ISSN 1748-8842, Vol. 84, no 3, p. 192-199Article in journal (Refereed)
    Abstract [en]

    Purpose - The purpose of this paper is to present the latest subscale demonstrator aircraft developed at Linkoping University. It has been built as part of a study initiated by the Swedish Material Board (FMV) on a Generic Future Fighter aircraft. The paper will cover different aspects of the performed work: from paper study realised by SAAB to the first flight of the scaled demonstrator. The intention of the paper is to describe what has been realised and explain how the work is may be used to fit within aircraft conceptual design. Design/methodology/approach - The approach has been to address the challenges proposed by the customer of the demonstrator, how to design, manufacture and operate a scaled demonstrator of an aircraft study in conceptual design within five months. Similar research projects have been reviewed in order to perform the current work. Findings - The results obtained so far have led to new questions. In particular, the project indicated that more research is needed within the area of subscale flight testing for usage in aircraft conceptual design, since a scaled demonstrator is likely to answer some questions but will probably open up new ones. Research limitations/implications - The current research is just in its infancy and does not bring any final conclusion but does, however, offer several guidelines for future works. Since the aircraft study was an early phase concept study, not much data are available for validation or comparison. Therefore, the paper is not presenting new methods or general conclusions. Practical implications - Results from a conceptual aircraft study and a realisation of a scaled prototype are presented, which show that scaled flight testing may be used with some restriction in conceptual design. Originality/value - The value of this paper is to show that universities can be involved in prototype development and can work in close collaboration with industries to address issues and solutions within aircraft conceptual design.

  • 14.
    Jouannet, Christopher
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Design and Flight Testing of an ECO-Sport Aircraft2010Conference paper (Other academic)
    Abstract [en]

    The presented work is centered on different concept studies for “greener” sport aircraft. The goal is to show the possibility to manufacture a sport aircraft based on different environmental friendly propulsion systems. A first theoretical part consists of creating a sizing program for studying different concepts. Then the gathered knowledge will result in the realization of two flying down-scaled demonstrators. This study was realized during a student project over a 5 month period.

  • 15.
    Jouannet, Christopher
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems .
    Lundström, David
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems .
    Amadori, Kristian
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Machine Design .
    Berry, Patrick
    Linköping University, The Institute of Technology. Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems .
    Design of a Very Light Jet and a Dynamically Scaled Demonstrator2008In: AIAA Aerospace Sciences Meeting and Exhibit,2008, USA: AIAA , 2008Conference paper (Refereed)
    Abstract [en]

      

  • 16.
    Jouannet, Christopher
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Morphing Wing Design, from Study to Flight Test2009Conference paper (Refereed)
    Abstract [en]

    Mission adaptive wing have been implement in the past, this article present an approach were wingarea reduction of at least 40% has to be achieved. The project goal is to evaluate different concept bythe uses of flying demonstrators. This was realized during a student project over a five month period.

  • 17.
    Lundström, David
    et al.
    Linköping University, Department of Computer and Information Science, AUTTEK - Autonomous Unmanned Aerial Vehicle Research Group . Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    RAVEN - A Subscale Radio Controlled Business Jet Demonstrator2008In: proceedings from the ICAS 2008, CD-ROM, Anchorage: International Council of the Aeronautical Sciences, (ICAS) , 2008Conference paper (Refereed)
    Abstract [en]

    A dynamically scaled model of a Business-Jet has been build and is undergoing testing at Linköping University. The goal of the project was to understand the difficutlties of dynamic scaling and how to extract useful data from subscale flight testing. This paper presents the experience made during the projects up to the time of writing, and includes details from manufacturing, ground testing equipment such as car top testing, in flight data acquisition system design and preparation for the fligt testing.

  • 18.
    Lundström, David
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Automation of Design and Prototyping of Micro Aerial Vehicle2009Conference paper (Refereed)
    Abstract [en]

    The presented work is centered on the automation of the design process of Micro or MiniAerial Vehicles (MAV). A design optimization framework that links together a CAD systemfor airframe design and a panel code for aerodynamic evaluations has been developed. Thispaper is based on research and results previously published by the research team. Itdescribes the experiences made so far, and demonstrates with a case study, how fullyautomated design is indeed possible. The user is required to enter the initial requirementsinto the system that will then optimize the MAV design. Both the geometry and thepropulsion system are taken into account. Finally, a 3D printer is used for manufacturing ofthe aircraft. The optimization comprises both discrete and continuous variables. Validationof common propulsion system models is also presented.

  • 19.
    Lundström, David
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Distributed Framework for Micro Aerial Vehicle Design Automation2008In: Proceedings from the 46th AIAA Aerospace Sciences Meeting and Exhibit, 7 - 10 January, Reno, NV, USA, AIAA , 2008, p. 140-Conference paper (Other academic)
    Abstract [en]

    Micro or mini aerial vehicles are characterized by being simple and inexpensive to build, and due to their small size very important to optimize. They are also likely to be built in relatively small series and be tailored for the sensors and equipment available at the time of deployment. Therefore "design and build on demand" is very attractive, where a modular concept with a more or less automated design process is desirable. In this paper design automation of a Micro or Mini Aerial Vehicle (MAV) is demonstrated using a distributed design optimization framework that involves selections of components from a database of propulsion system equipment and geometrical shape optimization. The framework links together a CAD system, responsible for the aircraft shape generation, with a panel code for aerodynamic evaluations.

     

  • 20.
    Lundström, David
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechanical Engineering Systems. Linköping University, The Institute of Technology.
    Validation of Models for Small Scale Electric Propulsion Systems2010Conference paper (Other academic)
    Abstract [en]

    At Linköping University work has been carried out towards having an automated designand manufacturing process of Micro Air Vehicles (MAV). A dedicated design optimizationframework has been developed. Initial experience has shown that choosing the rightpropulsion system has a major relevance on the overall performance of the aircraft. Thusthe correctness and fidelity of the models used to describe each component of the propulsionsystem are matters of great importance. With this knowledge an effort has been made tovalidate the propulsion system’s models. Using a specifically designed test rig a number ofdifferent motors and motor controllers have been tested. The motor model has shown goodcorrelation with test data, although manufacturer’s specifications have proven less reliable.Motor controller characteristics has shown to be complex and difficult to model.

  • 21.
    Melin, Tomas
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Parametric wing profile description for conceptual design2011Conference paper (Refereed)
    Abstract [en]

    A fundamental part of aircraft design involves the wing airfoil optimization, establishing an outer shape of the wing which has good aerodynamic performance, good internal volume distribution for fuel and systems and which also serves as an efficient structural member supporting the weight of the aircraft. As for all optimization tasks, the complexity of the problem is directly coupled to the parameterization of the geometry. Of highest relevance are the number of parameters and the number of additional constraints that are required to ensure valid modeling.This paper proposes a parameterization method for two dimensional airfoils, aimed at providing a wide design space, while at the same time keeping the number of parameters low. With 15 parameters defining the wing profile, many of the existing airfoils can be modeled with close tolerance.

  • 22.
    Melin, Tomas
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Parametric wing profile description for conceptual design2011In: CEAS 2011 Proceedings, 2011Conference paper (Other academic)
    Abstract [en]

    A fundamental part of aircraft design involves the wing airfoil optimization, establishing an outer shape of the wing which has good aerodynamic performance, good internal volume distribution for fuel and systems and which also serves as an efficient structural member supporting the weight of the aircraft. As for all optimization tasks, the complexity of the problem is directly coupled to the parameterization of the geometry. Of highest relevance are the number of parameters and the number of additional constraints that are required to ensure valid modeling.This paper proposes a parameterization method for two dimensional airfoils, aimed at providing a wide design space, while at the same time keeping the number of parameters low. With 15 parameters defining the wing profile, many of the existing airfoils can be modeled with close tolerance.Several approaches to parameterization of wing profiles can be found in the literature. Airfoils can be described by point clouds as done in most airfoil libraries [1]. The number of parameters is twice as large as the number of points used (x and y coordinates) and in the case of aerodynamic optimization this parameterization will most certainly be not well behaved, since no smoothing function is included and must therefore be added. Other problems may arise for the fact that the airfoils sometimes are defined with too few coordinate points and/or too few decimals, a problem occurring especially with old airfoils. On the other hand, the design space that this kind of parameterization allows representing is extremely large, as any and all shapes can be reproduced, even degenerate ones.

  • 23.
    Munjulury, Raghu Chaitanya
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Knowledge-based Integrated Wing Automation and Optimization for Conceptual Design2015In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015Conference paper (Refereed)
    Abstract [en]

    Contemporary aircraft design and development incurs high costs and consumes a lot of time for research and implementation. To minimize the development cost, an improvement of the conceptual design phase is desirable. A framework to support the initial design space exploration and conceptual design phase is presently being developed at Linköping University. In the aircraft design, the geometry carries a critical, discriminating role since it stores a significant part of the information and the data needed for most investigations. Methodology for design automation of a wing with a detailed description such that the geometry is effectively propagated for further analysis is presented in this paper. Initial weight estimation of the wing is performed by combining the weight penalty method with a sophisticated CAD model. This wing model is used for airfoil shape optimization and later for structural optimization. A methodology for automatic meshing of the geometry for CFD and FEM when the surfaces increase or decrease during the design automation is proposed. The framework combining automation capability with shape and structural optimization will enhance the early design phases of aircraft conceptual design.

  • 24.
    Papageorgiou, Athanasios
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, Faculty of Science & Engineering.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Multidisciplinary Optimization of Unmanned Aircraft in a System of Systems Context2018Conference paper (Other academic)
    Abstract [en]

    This paper explores the use of Multidisciplinary Design Optimization (MDO) in the development of Unmanned Aerial Vehicles (UAVs) when the requirements include a collaboration in a System of Systems (SoS) environment. In this work, the framework considers models that can capture the mission, stealth, and surveillance performance of each aircraft, while at the same time, a dedicated simulation module assesses the total cooperation effect on a given operational scenario. The resulting mixed continuous and integer variable problem is decomposed with a multi-level architecture, and in particular, it is treated as a fleet allocation problem that includes a nested optimization routine for sizing a “yet-to-be-designed” aircraft. Overall, the models and the framework are evaluated through a series of optimization runs, and the obtained Pareto front is compared with the results from a traditional aircraft mission planning method in order to illustrate the benefits of this SoS approach in the design of UAVs.

  • 25.
    Papageorgiou, Athanasios
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Tarkian, Mehdi
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Andersson (Ölvander), Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Multidisciplinary Optimization of Unmanned Aircraft Considering Radar Signature, Sensors, and Trajectory Constraints2018In: Journal of Aircraft, ISSN 0021-8669, E-ISSN 1533-3868, Vol. 55, no 4, p. 1629-1640Article in journal (Refereed)
    Abstract [en]

    This paper presents a multidisciplinary design optimization framework applied to the development of unmanned aerial vehicles with a focus on radar signature and sensor performance requirements while simultaneously considering the flight trajectory. The primary emphasis herein is on the integration and development of analysis models for the calculation of the radar cross section and sensor detection probability, whereas traditional aeronautical disciplines such as aerodynamics and mission simulation are also taken into account in order to ensure a flyable concept. Furthermore, this work explores the effect of implementing trajectory constraints as a supplementary input to the multidisciplinary design optimization process and presents a method that enables the optimization of the aircraft under a three-dimensional flight scenario. To cope with the additional computational cost of the high-fidelity radar cross section and sensor calculations, the use of metamodels is also investigated and an efficient development methodology that can provide high-accuracy approximations for this particular problem is proposed. Overall, the operation and performance of the framework are evaluated against five surveillance scenarios, and the obtained results show that the implementation of trajectory constraints in the optimization has the potential to yield better designs by 12–25% when compared to the more “traditional” problem formulations.

  • 26.
    Papageorgiou, Athanasios
    et al.
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Tarkian, Mehdi
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Ölvander, Johan
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
    Multidisciplinary Design Optimization of Aerial Vehicles: A Review of Recent Advancements2018In: International Journal of Aerospace Engineering, ISSN 1687-5966, E-ISSN 1687-5974, article id 4258020Article, review/survey (Refereed)
    Abstract [en]

    The aim of this paper is to present the most common practices in multidisciplinary design optimization (MDO) of aerial vehicles over the past decade. The literature sample is identified through established internet search engines, and a stringent review methodology is implemented in order to ensure the selection of the most relevant sources. In this work, the primary emphasis is on the assessment of the state-of-the-art framework development strategies, while at a secondary level, the objective is to identify the possible improvement directions by evaluating the research trends and gaps. As an additional contribution, statistical studies are also provided, and it is shown how MDO of aerial vehicles has evolved in terms of problem formulation, disciplinary modeling, analysis capabilities, tool implementation, and general applicability. Given this foundation as well as the results of the review, this work concludes by presenting a roadmap for guiding academia and industry in respect to the application of MDO on aerial vehicles. Overall, the roadmap together with the literature review is not only expected to serve as a guide for newcomers into the MDO field but also as an elementary basis which will allow researchers to conduct additional studies in this important and constantly evolving area of design.

  • 27.
    Staack, Ingo
    et al.
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Chaitanya Manjula, Raghu
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Berry, Patrick
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Melin, Tomas
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Amadori, Kristian
    Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
    Jouannet, Christopher
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Lundström, David
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Krus, Petter
    Linköping University, Department of Management and Engineering, Fluid and Mechatronic Systems. Linköping University, The Institute of Technology.
    Parametric Aircraft Conceptual Design Space2012In: Prceedings of the 28th International Congress of the Aeronautical Sciences, 2012Conference paper (Other academic)
    Abstract [en]

    This paper presents the development of a design framework for the initial conceptual design phase. The focus in this project is on a flexible database in XML format, together with close integration of automated CAD, and other tools, which allows the developed geometry to be used directly in the subsequent preliminary design phase. The database and the geometry are also described and an overview is given of included tools like aerodynamic analysis and weight estimation.

1 - 27 of 27
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf