Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Karl
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    Intelligent control system for street lighting2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Street lighting is an important aspect of infrastructure in terms of both safety and comfort, but it also consumes a lot of energy. Unused light is a waste of energy, and without any form of control of the street lighting, this problem will continue to increase along with the expansion of road networks. The aim of this thesis is to propose an intelligent control system for street lighting that can adapt to the velocity of individual road users, to investigate if this could provide ways to improve the efficiency of street lighting. Previous control approaches include systems based on ambient light intensity or presence of road users, but no studies were found in which illumination adapts to the velocity of road users. The project involves three main steps, including a literature review, a system implementation and evaluation. In the proposed system, street lights cooperate to detect road users and calculate their velocities in order to adapt the illumination and make it follow their movement. It can be concluded from the evaluation results that the velocity readings help further optimize the illumination control in comparison to systems that do not consider velocity. The velocity readings make it possible to only illuminate the roadway in the direction of travel, while also adapting the distance of illumination to the recorded speed. The proposed control scheme is considered a viable solution for reducing the amount of unused light, consequently reducing the energy consumption of street lighting.

  • 2.
    Andersson, Karl
    Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
    PLC Lab Station: An Implementation of External Monitoring and Control Using OPC2014Independent thesis Basic level (university diploma), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The PLC is frequently used when implementing automated control, which is animportant part of many modern industries. This thesis has been carried out incollaboration with ÅF Consult in Sundsvall, who were in need of a PLC labstation for educational purposes. The overall aim of this thesis has been todesign and construct such a lab station and also to implement a solution forexternal monitoring and control possibilities. The methodology of this projecthas included a literary study, followed by the implementation of the actualsolutions and finally an evaluation of the project. The finished lab stationincludes a conveyor belt and a robotic arm controlled using two PLCs. Theconveyor belt is designed to be able to store, transport, differentiate and sortsmall cubes of various materials, and the robotic arm is designed as a pick-andplacedevice that can move the cubes between different positions on the labstation. The monitoring and control solution is set up using an OPC clientserverconnection on a PC and it provides a graphical user interface where thelab station can be monitored and controlled externally. The lab station offersdiverse functionality, but due to some inconsistency in the included equipmentit is not entirely reliable. The external monitoring and control solution alsoprovides good functionality, but the time frame of the project resulted in a lessextensive implementation than originally intended. The overall solutions are,however, considered to offer a functional and proper platform for educationalpurposes.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf