Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ariöz, Candan
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ye, Weihua
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    al Bakali, Amin
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ge, Changrong
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Götzke, Hansjörg
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Barth, Andreas
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Wieslander, Åke
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Anionic Lipid Binding to the Foreign Protein MGS Provides a Tight Coupling between Phospholipid Synthesis and Protein Overexpression in Escherichia coli2013In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 52, no 33, p. 5533-5544Article in journal (Refereed)
    Abstract [en]

    Certain membrane proteins involved in lipid synthesis can induce formation of new intracellular membranes in Escherichia coli, i.e., intracellular vesicles. Among those, the foreign monotopic glycosyltransferase MGS from Acholeplasma laidlawii triggers such massive lipid synthesis when overexpressed. To examine the mechanism behind the increased lipid synthesis, we investigated the lipid binding properties of MGS in vivo together with the correlation between lipid synthesis and MGS overexpression levels. A good correlation between produced lipid quantities and overexpressed MGS protein was observed when standard LB medium was supplemented with four different lipid precursors that have significant roles in the lipid biosynthesis pathway. Interestingly, this correlation was highest concerning anionic lipid production and at the same time dependent on the selective binding of anionic lipid molecules by MGS. A selective interaction with anionic lipids was also observed in vitro by P-31 NMR binding studies using bicelles prepared with E. coli lipids. The results clearly demonstrate that the discriminative withdrawal of anionic lipids, especially phosphatidylglycerol, from the membrane through MGS binding triggers an in vivo signal for cells to create a feed-forward stimulation of lipid synthesis in E. coil. By this mechanism, cells can produce more membrane surface in order to accommodate excessively produced MGS molecules, which results in an interdependent cycle of lipid and MGS protein synthesis.

  • 2.
    Gowda, Naveen K. C.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kaimal, Jayasankar M.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kityk, Roman
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mayer, Matthias P.
    Andréasson, Claes
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Nucleotide exchange factors Fes1 and HspBP1 mimic substrate to release misfolded proteins from Hsp702018In: Nature Structural & Molecular Biology, ISSN 1545-9993, E-ISSN 1545-9985, Vol. 25, no 1, p. 83-+Article in journal (Refereed)
    Abstract [en]

    Protein quality control depends on the tight regulation of interactions between molecular chaperones and polypeptide substrates. Substrate release from the chaperone Hsp70 is triggered by nucleotide-exchange factors (NEFs) that control folding and degradation fates via poorly understood mechanisms. We found that the armadillo-type NEFs budding yeast Fes1 and its human homolog HspBP1 employ flexible N-terminal release domains (RDs) with substrate-mimicking properties to ensure the efficient release of persistent substrates from Hsp70. The RD contacts the substrate-binding domain of the chaperone, competes with peptide substrate for binding and is essential for proper function in yeast and mammalian cells. Thus, the armadillo domain engages Hsp70 to trigger nucleotide exchange, whereas the RD safeguards the release of substrates. Our findings provide fundamental mechanistic insight into the functional specialization of Hsp70 NEFs and have implications for the understanding of proteostasis-related disorders, including Marinesco-Sjögren syndrome.

  • 3.
    Gowda, Naveen Kumar C.
    et al.
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kaimal, Jayasankar Mohanakrishnan
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Kityk, Roman
    Daniel, Chammiran
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Öhman, Marie
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Mayer, Matthias P.
    Andréasson, Claes
    Stockholm University, Faculty of Science, Department of Molecular Biosciences, The Wenner-Gren Institute.
    Substrate-mimicking domain of nucleotide-exchange factor Fes1/HspBP1 ensures efficient release of persistent substrates from Hsp70Manuscript (preprint) (Other academic)
  • 4.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Membrane interactions of glycosyltransferases2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Many important biological processes occur near or in membranes. The role of membranes is not merely confined to compartmentalization, they also form the matrix for membrane associated proteins and are of functional importance. Membrane associated proteins on the other hand require specific membrane properties for proper function. The interactions between membranes and proteins are thus of paramount importance and are at the focus of this work.

    To draw valid conclusions about the nature of such interactions the membrane mimetics required in biophysical methods must faithfully mimic crucial properties of biological membranes. To this end, new types of small isotropic bicelles which mimic plant and bacterial membranes were characterized by their size and lipid dynamics using solution-state NMR. Small isotropic bicelles are specifically well suited for solution-state NMR studies since they maintain a bilayer while being sufficiently small to conduct interpretable experiments at the same time. Monogalactosyl diacylglycerol and digalactosyl diacylglycerol, which are highly abundant in thylakoid membranes, were successfully incorporated into bicelles. Also, it was possible to make bicelles containing a lipid mixture extracted from Escherichia coli cells.

    A fundamental physical property of lipids in bilayers is their phase behaviour and thus the dynamics that lipids undergo in a membrane. Here, the dynamics of 13C-1H bonds in lipids were studied by nuclear spin relaxation. From such studies it was found that the glycerol backbone of lipids in bicelles is rigid while the flexibility of the acyl chain increases towards its end. Bulky head groups are rigid, while smaller head groups are more dynamic than the glycerol backbone. Acyl chain modifications, like unsaturations or cyclopropane moities, that are typically found in E. coli lipids, locally increase the rigidity of the acyl chain.

    Membrane interactions of a putative membrane anchor of the glycosyltransferase WaaG, MIR-WaaG, were studied by fluorescence methods, circular dichroism and solution-state NMR. It was found that MIR-WaaG binds to vesicles that mimic the anionic charge of E. coli inner membranes and that α-helical structure is induced upon interaction. The NMR-structure of MIR-WaaG agrees well with the crystal structure and from paramagnetic relaxation enhancement studies it could be concluded that a central part of MIR-WaaG is immersed in the membrane mimetic. Based on these results a model of the membrane interaction of WaaG is proposed where MIR-WaaG anchors WaaG to the cytosolic leaflet of the E. coli inner membrane via electrostatic interactions. These are potentially enhanced by membrane interactions of Tyr residues at the membrane interface and of hydrophobic residues inside the membrane.

  • 5.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Taming the Griffin: Membrane interactions of peripheral and monotopic glycosyltransferases and dynamics of bacterial and plant lipids in bicelles2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Biological membranes form a protective barrier around cells and cellular compartments. A broad range of biochemical processes occur in or at membranes demonstrating that they are not only of structural but also of functional importance. One important class of membrane proteins are membrane-associated glycosyltransferases. WaaG is a representative of this class of proteins; its function is to catalyze one step in the synthesis of lipopolysaccharides, which are outer membrane lipids found in Gram-negative bacteria.

    To study protein-membrane complexes by biophysical methods, one must employ membrane mimetics, i.e. simplifications of natural membranes. One type of membrane mimetic often employed in solution-state NMR is small isotropic bicelles, obloid aggregates formed from a lipid bilayer that is dissolved in aqueous solvent by detergent molecules that make up the rim of the bicelle.

    In this thesis, fast dynamics of lipid atoms in bicelles containing lipid mixtures that faithfully mimic plant and bacterial membranes were investigated by NMR relaxation. Lipids were observed to undergo a broad range of motions; while the glycerol backbone was found to be rigid, dynamics in the acyl chains were much more rapid and unrestricted. Furthermore, by employing paramagnetic relaxation enhancements an ‘atomic ruler’ was developed that allows for measurement of the immersion depths of lipid carbon atoms.

    WaaG is a membrane-associated protein that adopts a GT-B fold. For proteins of this type, it has been speculated that the N-terminal domain anchors tightly to the membrane via electrostatic interactions, while the anchoring of the C-terminal domain is weaker. Here, this model was tested for WaaG. It was found by a set of circular dichroism, fluorescence, and NMR techniques that an anchoring segment located in the N-terminal domain termed MIR-WaaG binds electrostatically to membranes, and the structure and localization of isolated MIR-WaaG inside micelles was determined. Full-length WaaG was also found to bind membranes electrostatically. It senses the surface charge density of the membrane whilst not discriminating between anionic lipid species. Motion of the C-terminal domain could not be observed under the experimental conditions used here. Lastly, the affinity of WaaG to membranes is lower than expected, indicating that WaaG should not be classified as a monotopic membrane protein but rather as a peripheral one.

  • 6.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Fu, Biao
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Brown, Christian
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    New insights into the membrane association mechanism of the glycosyltransferase WaaG from Escherichia coli2018In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1860, no 3, p. 683-690Article in journal (Refereed)
    Abstract [en]

    Monotopic glycosyltransferases (GTs) interact with membranes via electrostatic interactions. The N-terminal domain is permanently anchored to the membrane while the membrane interaction of the C-terminal domain is believed to be weaker so that it undergoes a functionally relevant conformational change upon donor or acceptor binding. Here, we studied the applicability of this model to the glycosyltransferase WaaG. WaaG is involved in the synthesis of lipopolysaccharides (LPS) in Gram-negative bacteria and was previously categorized as a monotopic GT. We analyzed the binding of WaaG to membranes by stopped-flow fluorescence and NMR diffusion experiments. We find that electrostatic interactions are required to bind WaaG to membranes while mere hydrophobic interactions are not sufficient. WaaG senses the membrane's surface charge density but there is no preferential binding to specific anionic lipids. However, the binding is weaker than expected for monotopic GTs but similar to peripheral GTs. Therefore, WaaG may be a peripheral GT and this could be of functional relevance in vivo since LPS synthesis occurs only when WaaG is membrane-bound. We could not observe a C-terminal domain movement under our experimental conditions.

  • 7.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Fu, Biao
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Brown, Christian
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    The glycosyltransferase WaaG: a peripheral membrane protein?Manuscript (preprint) (Other academic)
  • 8.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Immersion Depths of Lipid Carbons in Bicelles Measured by Paramagnetic Relaxation Enhancement2017In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 121, no 32, p. 7660-7670Article in journal (Refereed)
    Abstract [en]

    Myriads of biological processes occur in or at cellular lipid membranes. Knowledge about the localization of proteins, lipids, and other molecules within biological membranes is thus crucial for the understanding of such processes. Here, we present a method to determine the immersion depths of lipid carbon atoms in membranes by paramagnetic relaxation enhancement (PRE) caused by the presence of doxylated lipids. As membrane mimetics, we employ small isotropic bicelles made of synthetic lipids and of natural Escherichia coli phospholipid extract. Bicelles are particularly suitable for solution state NMR since they maintain a lipid bilayer while they are at the same time amenable to solution state NMR experiments. PREs were measured in the presence of different doxylated lipids with the nitroxide radical located in the headgroup and at various positions in the acyl chain. Theoretical PREs were calculated assuming a simple bicelle model using the Solomon–Bloembergen equations. Immersion depths of the lipid carbon atoms were obtained by a least-squares fit of the theoretical to the experimental PREs. The carbon immersion depths correspond well to results obtained by other methods and differences do not exceed 3–5 Å. This means that the method presented here provides sufficient resolution to distinguish the localization of carbons in different regions of the lipid bilayer, despite considerable simplifications of the underlying theory. These simplifications include a simple form of the spectral density function, which we find is sufficient to reliably determine immersion depths. A more complicated spectral density function that includes bicelle, lipid, and local motions may only improve the results if its parametrization is good enough. The approach presented here may be extended to the determination of protein localization in membranes employing realistic membrane mimetics like the bicelles made of E. coli phospholipid extract used here.

  • 9.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Pettersson, Pontus
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Szpryngiel, Scarlett
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Membrane Interaction of the Glycosyltransferase WaaG2015In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 109, no 3, p. 552-563Article in journal (Refereed)
    Abstract [en]

    The glycosyltransferase WaaG is involved in the synthesis of lipopolysaccharides that constitute the outer leaflet of the outer membrane in Gram-negative bacteria such as Escherichia coli. WaaG has been identified as a potential antibiotic target, and inhibitor scaffolds have previously been investigated. WaaG is located at the cytosolic side of the inner membrane, where the enzyme catalyzes the transfer of the first outer-core glucose to the inner core of nascent lipopolysaccharides. Here, we characterized the binding of WaaG to membrane models designed to mimic the inner membrane of E. coli. Based on the crystal structure, we identified an exposed and largely a-helical 30-residue sequence, with a net positive charge and several aromatic amino acids, as a putative membrane-interacting region of WaaG (MIR-WaaG). We studied the peptide corresponding to this sequence, along with its bilayer interactions, using circular dichroism, fluorescence quenching, fluorescence anisotropy, and NMR. In the presence of dodecylphosphocholine, MIR-WaaG was observed to adopt a three-dimensional structure remarkably similar to the segment in the crystal structure. We found that the membrane interaction of WaaG is conferred at least in part by MIR-WaaG and that electrostatic interactions play a key role in binding. Moreover, we propose a mechanism of anchoring WaaG to the inner membrane of E. coli, where the central part of MIR-WaaG inserts into one leaflet of the bilayer. In this model, electrostatic interactions as well as surface-exposed Tyr residues bind WaaG to the membrane.

  • 10.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Pettersson, Pontus
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Zuber, Philipp
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ariöz, Candan
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. Chalmers University of Technology, Sweden.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Fast-tumbling bicelles constructed from native Escherichia coli lipids2016In: Biochimica et Biophysica Acta - Biomembranes, ISSN 0005-2736, E-ISSN 1879-2642, Vol. 1858, no 9, p. 2097-2105Article in journal (Refereed)
    Abstract [en]

    Solution-state NMR requires small membrane mimetic systems to allow for acquiring high-resolution data. At the same time these mimetics should faithfully mimic biological membranes. Here we characterized two novel fast-tumbling bicelle systems with lipids from two Escherichia coli strains. While strain 1 (AD93WT) contains a characteristic E. coli lipid composition, strain 2 (AD93-PE) is not capable of synthesizing the most abundant lipid in E. coli, phosphatidylethanolamine. The lipid and acyl chain compositions were characterized by P-31 and C-13 NMR. Depending on growth temperature and phase, the lipid composition varies substantially, which means that the bicelle composition can be tuned by using lipids from cells grown at different temperatures and growth phases. The hydrodynamic radii of the bicelles were determined from translational diffusion coefficients and NMR spin relaxation was measured to investigate lipid properties in the bicelles. We find that the lipid dynamics are unaffected by variations in lipid composition, suggesting that the bilayer is in a fluid phase under all conditions investigated here. Backbone glycerol carbons are the most rigid positions in all lipids, while head-group carbons and the first carbons of the acyl chain are somewhat more flexible. The flexibility increases down the acyl chain to almost unrestricted motion at its end. Carbons in double bonds and cyclopropane moieties are substantially restricted in their motional freedom. The bicelle systems characterized here are thus found to faithfully mimic E. coli inner membranes and are therefore useful for membrane interaction studies of proteins with E. coli inner membranes by solution-state NMR.

  • 11.
    Liebau, Jobst
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ye, Weihua
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Characterization of fast-tumbling isotropic bicelles by PFG diffusion NMR2017In: Magnetic Resonance in Chemistry, ISSN 0749-1581, E-ISSN 1097-458X, Vol. 55, no 5, p. 395-404Article, review/survey (Refereed)
    Abstract [en]

    Small isotropic bicelles are versatile membrane mimetics, which, in contrast tomicelles, provide a lipid bilayer and are at the same time suitable for solution-state NMR studies. The lipid composition of the bilayer is flexible allowing for incorporation of various head groups and acyl chain types. In bicelles, lipids are solubilized by detergents, which are localized in the rimof the disk-shaped lipid bilayer. Bicelles have been characterized by a broad array of biophysical methods, pulsed-field gradient NMR (PFG NMR) being one of them. PFG NMR can readily be used to measure diffusion coefficients of macromolecules. It is thus employed to characterize bicelle size and morphology. Even more importantly, PFG NMR can be used to study the degree of protein association to membranes. Here, we present the advances that have been made in producing small, fast-tumbling isotropic bicelles from a variety of lipids and detergents, together with insights on the morphology of such mixtures gained from PFG NMR. Furthermore, we review approaches to study protein-membrane interaction by PFG NMR.

  • 12.
    Lindholm, Ljubica
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Ariöz, Candan
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Jawurek, Michael
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Wieslander, Åke
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    von Ballmoos, Christoph
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Barth, Andreas
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Effect of lipid bilayer properties on the photocycle of green proteorhodopsin2015In: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1847, no 8, p. 698-708Article in journal (Refereed)
    Abstract [en]

    The significance of specific lipids for proton pumping by the bacterial rhodopsin proteorhodopsin (pR) was studied. To this end, it was examined whether pR preferentially binds certain lipids and whether molecular properties of the lipid environment affect the photocycle. pR's photocyde was followed by microsecond flash-photolysis in the visible spectral range. It was fastest in phosphatidylcholine liposomes (soy bean lipid), intermediate in 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bicelles and in Triton X-100, and slowest when pR was solubilized in CHAPS. In bicelles with different lipid compositions, the nature of the head groups, the unsaturation level and the fatty acid chain length had small effects on the photocycle. The specific affinity of pR for lipids of the expression host Eschetichia coil was investigated by an optimized method of lipid isolation from purified membrane protein using two different concentrations of the detergent N-dodecyl-beta-D-maltoside (DDM). We found that 11 lipids were copurified per pR molecule at 0.1% DDM, whereas essentially all lipids were stripped off from pR by 1% DDM. The relative amounts of copurifled phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin did not correlate with the molar percentages normally present in E. coil cells. The results indicate a predominance of phosphatidylethanolamine species in the lipid annulus around recombinant pR that are less polar than the dominant species in the cell membrane of the expression host E. coli.

  • 13.
    Ye, Weihua
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Liebau, Jobst
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    Mäler, Lena
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics.
    New Membrane Mimetics with Galactolipids: Lipid Properties in Fast-Tumbling Bicelles2013In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 117, no 4, p. 1044-1050Article in journal (Refereed)
    Abstract [en]

    Galactolipids are the main structural component of plant chloroplastic (thylakoid) membranes and of blue-green algae cell membranes. The predominant lipids in this class are monogalactosyl-diacylglycerol (MGDG) and digalactosyl-diacylglycerol (DGDG). We here present a method for the preparation of bicelles that contain these galactolipids together with a characterization of the bicelles, and the lipids within the bicelles. NMR diffusion data show that up to 3096 of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) in a q = 0.5 DMPC/DHPC lipid matrix can be replaced with either monogalactosyl-diacylglycerol or digalactosyl-diacylglycerol and that these lipids incorporate into the bicelles. No evidence for phase separation is observed. Bicelles made with monogalactosyl-diacylglycerol are significantly larger than bicelles containing only DMPC, already with only 1096 of the DMPC replaced with the galactolipid. The effect of digalactosyl-diacylglycerol on bicelle size is much smaller. These observations are likely to be correlated with the different bilayer-forming properties of the lipids. Monogalactosyl-diacylglycerol is a non-bilayer-forming lipid, while digalactosyl-diacylglycerol is a bilayer-forming lipid. Both galactolipids display extensive local motion within the bilayer, as evidenced by natural abundance carbon-13 relaxation of the lipid molecules. The sugar headgroup regions are motionally restricted and cannot be described by a model that does not take into account anisotropic reorientation of the sugar units. No significant effect of the galactolipids on DMPC dynamics was observed. Our results indicate that these bicelles may become useful as model membrane mimetic media for studies of galactolipid-protein interactions.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf