Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hjalmarsson, Johannes
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
    Elektrifiering av transportsektorn i Göteborgs kommun: Nätintegrering av plug in-fordon och V2G-tjänster hos aggregator2018Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In 2015, the Paris Agreement was signed by almost 200 countries in order to define targets for future work within sustainability and to reduce further climate impact. Since then, the European Union has taken these targets in earnest and implemented purposeful legislation for all of its members. The Swedish government has introduced an even more ambitious climate policy framework in order to achieve as low national pollution levels as possible. By doing so, regional and local authorities have been forced to take action in order to meet the defined targets for 2030 and 2050. This implies that the Swedish transport sector is now facing a major challenge - to reduce its emissions of greenhouse gases by at least 70 % as of the level of 2010. A common opinion is that electric vehicles may play an important role in this task. To establish electric drivelines within the transport sector has been a worldwide vision for decades and it seems to be one of the most promising options today.

    Sweco has together with AB Volvo, Volvo Cars AB, Göteborg Energi, ABB Ltd and Vattenfall AB financed the official project PussEL. Mainly, the purpose of this project was to estimate the potential of a full electrification of the transport sector in a medium size city by 2030. For this project, it was of particular interest to use Gothenburg, Sweden, as a case study. It has been most relevant to consider the electrification of road transport, including both private and public transport as well as goods distribution. The analysis has resulted in a message to residents, businesses and politicians, that an extensive electrification is doable. However, the results also indicate that the distribution grid will require a significant extension. It will definitely require serious effort and will rely on the implementation of smart and controllable vehicle charging. Nevertheless, this might be just what it takes to become one of the world leading countries in sustainable transports.

    Secondly, the purpose of this thesis is also to clarify the potential of the local parking company to act as an aggregator for charging and discharging of electric vehicles. By considering local driving patterns, parking profiles in car parks, as well as prerequisites of the electricity markets, it has been possible to identify the technical potential. It has been of interest to investigate services including both smart charging (V1G) and vehicle-to-grid (V2G), in order to support an extensive electrification. The estimation has been done using available software from MathWorks: MATLAB. Previous research states that battery degradation from V2G services varies according to the depth of discharge (DOD). Thus, it is desired to utilize services that require a small DOD in order to minimize the reduction of battery lifetime. Considering the economic potential, this thesis examines several available services as an aggregator. Due to the variable capacity in each car parkin combination with the requirements set by the electricity markets, some services have been excluded at an early stage of the analysis. Although, besides economic profitability, a key to success is to keep the concept user-friendly. It must be kept in mind that car owners most likely will prioritize the freedom of mobility rather than leasing their vehicles as mobile batteries.

    As the Swedish lawyer Thomas Thorild once said: To think freely is great, but to think rightly is greater.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf