Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alfredsson, Hampus
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Nyman, Joakim
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Joborn, Martin
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Staack, Ingo
    Linköping University, Sweden.
    Petit, Oliver
    LFV Luftfartsverket, Sweden.
    Infrastrukturmodellering för storskalig introduktion av elflyg och flygtrafikledning (MODELflyg)2022Report (Other academic)
    Abstract [en]

    A generic, flexible simulation model is developed with the aim of increasing our understanding as well as provide opportunities to easily test what the requirements for charging infrastructure at airports could become when transitioning to battery electric aviation. The model is developed in the programming language Python and contains several different approaches for testing electrification based on historical air traffic data, as well as the creation of new, non-existent air traffic schedules for electric aviation. Since there are currently no electric aircraft in commercial scheduled traffic, and thus no data or statistics regarding its performance or properties, a model is also developed for this, which allows simulation of desired flight connections, resulting in estimates for energy consumption and flight duration. The project is based on an electric aircraft model that is parameterized in accordance with certification level CS/FAR-23 (19 seats and maximum weight 8618 kg). The logic of the model is to follow the complete chain of movements for each aircraft individual during a given period (typically one day), where charging required for each aircraft at each airport in the chain is given by what energy level the battery held at the start of flight, how much energy was consumed during the flight, time of arrival at destination, and when the next departure is due. Taxi-in and taxi-out at the airports also affect how much time is available for charging. A built-in charge curve limits how fast it is practically convenient for the aircraft’s batteries to charge, which is defined as the ratio between C-rate (Charging-rate) and SoC (State-of-Charge). In addition, the charger itself can be limited to a certain maximum power and thus controls how fast energy can be delivered to the aircraft's batteries. To enable sufficient range, the electric aircrafts are expected to have relatively large batteries that are also likely to be charged within short time intervals at the airports (turnaround-times). Thus, the need to install power capacity may be expected to increase drastically at the airports if several aircraft’s need to charge simultaneously. The project therefore places extra emphasis on developing smart algorithms for controlling charger power output over time with the ambition to balance the load and lower power peaks at the airports. Finally, the project discusses what implications electric aviation can have from the perspective of air traffic control, existing and future airspace structures. Further, several case studies are conducted to exemplify the modeling process and the result that the user ultimately gets. The project does not aim to create a commercial tool, but rather a first version, and create the basis for further development of an analysis tool that is useful for airports and other stakeholders in the aviation industry now, and in future research and development collaborations.

    Download full text (pdf)
    fulltext
  • 2.
    Alfredsson, Hampus
    et al.
    RISE Research Institutes of Sweden, Mobilitet och system.
    Nyman, Joakim
    RISE Research Institutes of Sweden, Mobilitet och system.
    Joborn, Martin
    RISE Research Institutes of Sweden, Mobilitet och system.
    Staack, Ingo
    Linköping University, Sweden.
    Petit, Oliver
    LFV Luftfartsverket, Sweden.
    Infrastrukturmodellering för storskalig introduktion av elflyg och flygtrafikledning (MODELflyg)2022Report (Other academic)
    Abstract [en]

    A generic, flexible simulation model is developed with the aim of increasing our understanding as well as provide opportunities to easily test what the requirements for charging infrastructure at airports could become when transitioning to battery electric aviation. The model is developed in the programming language Python and contains several different approaches for testing electrification based on historical air traffic data, as well as the creation of new, non-existent air traffic schedules for electric aviation. Since there are currently no electric aircraft in commercial scheduled traffic, and thus no data or statistics regarding its performance or properties, a model is also developed for this, which allows simulation of desired flight connections, resulting in estimates for energy consumption and flight duration. The project is based on an electric aircraft model that is parameterized in accordance with certification level CS/FAR-23 (19 seats and maximum weight 8618 kg). The logic of the model is to follow the complete chain of movements for each aircraft individual during a given period (typically one day), where charging required for each aircraft at each airport in the chain is given by what energy level the battery held at the start of flight, how much energy was consumed during the flight, time of arrival at destination, and when the next departure is due. Taxi-in and taxi-out at the airports also affect how much time is available for charging. A built-in charge curve limits how fast it is practically convenient for the aircraft’s batteries to charge, which is defined as the ratio between C-rate (Charging-rate) and SoC (State-of-Charge). In addition, the charger itself can be limited to a certain maximum power and thus controls how fast energy can be delivered to the aircraft's batteries. To enable sufficient range, the electric aircrafts are expected to have relatively large batteries that are also likely to be charged within short time intervals at the airports (turnaround-times). Thus, the need to install power capacity may be expected to increase drastically at the airports if several aircraft’s need to charge simultaneously. The project therefore places extra emphasis on developing smart algorithms for controlling charger power output over time with the ambition to balance the load and lower power peaks at the airports. Finally, the project discusses what implications electric aviation can have from the perspective of air traffic control, existing and future airspace structures. Further, several case studies are conducted to exemplify the modeling process and the result that the user ultimately gets. The project does not aim to create a commercial tool, but rather a first version, and create the basis for further development of an analysis tool that is useful for airports and other stakeholders in the aviation industry now, and in future research and development collaborations.

    Download full text (pdf)
    Infrastrukturmodellering för storskalig introduktion av elflyg och flygtrafikledning (MODELflyg)
  • 3.
    Alfredsson, Hampus
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Nyman, Joakim
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Nilsson, John
    Swedavia AB, Sweden.
    Staack, Ingo
    Linköping University, Sweden.
    Infrastructure modeling for large-scale introduction of electric aviation2022In: 35th International Electric Vehicle Symposium and Exhibition (EVS35), 2022Conference paper (Refereed)
    Abstract [en]

    This paper presents the results of the MODELflyg research project funded by the Swedish Transport Administration to gain more knowledge about ground charging infrastructure demand for the electrification of air traffic. An integrated simulation model was developed including flight traffic data processing, modelling of battery electric aircraft performance, and charging simulations. Several different options are available to select specific air traffic flows of interest, including scheduling algorithms for electric aviation adapted timetables. Furthermore, a smart-charging algorithm was developed to lower peak power demand at each airport from simultaneous charging of multiple electric aircraft.

    Download full text (pdf)
    fulltext
  • 4.
    Alfredsson, Hampus
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Rogstadius, Jakob
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Ruttbaserade simulerade trafikdata för högupplöst analys av tunga godstransporter på det svenska vägnätet2022Report (Other academic)
    Abstract [en]

    Route-based simulated traffic data for high-resolution analysis of heavy goods transport on the Swedish road network In this report, a national database has been created regarding freight transport with heavy road vehicles. The primary purpose of the work is to serve as input for further analysis of what appropriate charging infrastructure planning and placement should look like given the knowledge of the transport work. It has thus been no ambition to give any recommendations in this report about, for example, expansion of charging infrastructure, but rather to collect and process information/data as well as develop methods and finally generate a data set that is useful and well representative of the traffic on the national road network. By the time of this publication, a dataset is available based on data from the Swedish Transport Administration’s Samgods-model with its simulations of transport connections based on transport demand between producer and consumer zones. In addition, all transport connections have been translated into routes (how trucks drive from A to B) on the road network, to enable analysis of electrification of/at specific road segments. Finally, the dataset has also been calibrated in various ways to better match statistics and actual measurements, as some major differences/deviations compared to some of them were identified. What the data set now consists of can be summarized as the number of truck movements and tons of goods that annually pass each road segment of the Swedish road network (and on some foreign roads). Furthermore, these totals can be easily divided into subsets and linked to specific routes, types of trucks (weight classes), origin, etcetera. Some shortcomings/limitations have been noticed during the production of this data set, such as the fact that the Samgods-model seems to miss a lot of transport in metropolitan areas, that the routing carried out by all flows is not completely perfect (which has partly to do with requests from OpenStreetMap), that the methods for generating new routes based on population density within municipalities are unlikely to be fully representative of where the transport is going, or that the data itself is based on a simulation model that tries to optimize which type of transport should be used to meet which demand. A couple of additional things may be worth clarifying: (1) The data only tells the number of transports or shipped goods between start and end nodes. Thus, there is no way to determine what the movement pattern of individual vehicle individuals looks like between routes, nor when in time each transport is performed. (2) The data only includes freight transport, and thus "misses" for example all passenger car traffic, which should also be seen as potential users of the charging infrastructure and thus be included in the calculations in the future. It would therefore be interesting to include these in some way in the next step.

    Download full text (pdf)
    fulltext
  • 5.
    Enerbäck, Oscar
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Malmsten Lundgren, Victor
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Dolins, Sigma
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    S3 – Shared Shuttle Services: Fas 1 (2017-05-03 – 2019-12-31)2020Report (Other academic)
    Abstract [sv]

    S3-projektet handlar om att testa delade, elektrifierade och automatiserade skyttelbussar för att demonstrera hur dessa nya transportlösningar kan stimulera och stödja en förtätning av staden.Inom projektet har stadsutvecklare, näringsliv, akademi och offentlig sektor samlats för att gemensamt utforma och prova nya mobilitetskoncept för den första- och sista kilometern av resan. Rapporten beskriver den första fasen av projektet, från maj 2017 till och med december 2019, där skyttelbussarna testats vid Lindholmen Science Park, Chalmers campus Johanneberg samt i Härryda centrum. För att stärka projektet har arbete även utförts kring kompletterande mobilitetstjänster, öppen innovation, utvärdering, affärsmodell, färdplan, molninfrastruktur samt event och kommunikation kopplat till initiativet. Efter utmanande processer av projektering och tillståndsansökan lyckades testerna genomföras på vad som av teknik- och fordonsleverantörerna ansågs vara den mest utmanande rutten i världen som dessa fordon hittills kört på. Samtidigt är mognadsgraden för teknik och helhetstjänst fortfarande relativt låg, och kombinerat med givna säkerhetsprioriteringar lämnas en del att önska vad gäller grundläggande parametrar som hastighet och komfort. Dessutom innebär nuvarande tillståndskrav på säkerhetsoperatör ombord på fordonen begränsningar vad gäller till exempel hållbara affärsmodeller och möjligheten att studera vissa användarförhållanden. Tack till medverkande parter och finansiärer med ett särskilt tack till Vinnova, Drive Sweden och Lindholmen Science Park som gjort detta projekt möjligt. Tack till Transportstyrelsen, Trafikkontoret, Polisen och Chalmersfastigheter för snabba beslutsvägar och till Atrium Ljungberg för lånet av garageplats. Slutligen önskar projektet rikta ett stort tack till samtliga som varit med och testat skyttlarna.

    Download full text (pdf)
    fulltext
  • 6.
    Gustavsson, Martin G. H.
    et al.
    RISE Research Institutes of Sweden, Mobilitet och system.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Mobilitet och system.
    Börjesson, Conny
    RISE Research Institutes of Sweden, Mobilitet och system.
    Jelica, Darijan
    RISE Research Institutes of Sweden, Mobilitet och system.
    Sundelin, Håkan
    RISE Research Institutes of Sweden, Mobilitet och system.
    Johnsson, Filip
    Chalmers University of Technology, Sweden.
    Taljegård, Maria
    Chalmers University of Technology, Sweden.
    Engwall, Mats
    KTH Royal Institute of Technology, Sweden.
    Halse, Askill Harkjerr
    Norwegian Institute of Transport Economics, Norway.
    Lina, Nordin
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Almestrand Linné, Philip
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Käck, Andreas
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Lindgren, Magnus
    Swedish Transport Administration, Sweden.
    Research & Innovation Platform for Electric Road Systems2021Report (Other academic)
    Abstract [en]

    The Swedish government has prioritized achieving a fossil fuel-independent vehicle fleet by 2030 which will require radical transformation of the transport industry. Electrifying the vehicle fleet forms an important part of this transformation. For light vehicles, electrification using batteries and charging during parking is already well advanced. For city buses, charging at bus stops and bus depots is being developed, but for heavy, long-distance road transport, batteries with enough capacity to provide sufficient range would be too cumbersome and too much time would have to be spent stationary for charging.

    One solution might be the introduction of electric roads, supplying the moving vehicle with electricity both to power running and for charging. In the longer term, this approach could also be used for light vehicles and buses.

    The objective of the Research and Innovation Platform for Electric Roads was to enhance Swedish and Nordic research and innovation in this field, this has been done by developing a joint knowledge base through collaboration with research institutions, universities, public authorities, regions, and industries.

    The work of the Research and Innovation Platform was intended to create clarity concerning the socioeconomic conditions, benefits, and other effects associated with electric roads. We have investigated the benefits from the perspectives of various actors, implementation strategies, operation and maintenance standards, proposed regulatory systems, and factors conducive of the acceptance and development of international collaborative activities.

    The project commenced in the autumn of 2016 and the main research continued until December 2019, the work during year 2020 has been focused on knowledge spread and coordination with the Swedish-Germany research collaboration on ERS (CollERS). The results of the Research and Innovation Platform have been disseminated through information meetings, seminars, and four annual international conferences. Reports have been published in the participating partners’ ordinary publication series and on www.electricroads.org. The project was funded by Strategic Vehicle Research and Innovation (FFI) and the Swedish Transport Administration.

    Download full text (pdf)
    FULLTEXT01
  • 7.
    Gustavsson, Martin G. H.
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Börjesson, Conny
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Jelica, Darijan
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Sundelin, Håkan
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Johnsson, Filip
    Chalmers University of Technology, Sweden.
    Taljegård, Maria
    Chalmers University of Technology, Sweden.
    Engwall, Mats
    KTH Royal Institute of Technology, Sweden.
    Halse, Askill Harkjerr
    Norwegian Institute of Transport Economics, Norway.
    Lina, Nordin
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Almestrand Linné, Philip
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Käck, Andreas
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Lindgren, Magnus
    Swedish Transport Administration, Sweden.
    Research & Innovation Platform for Electric Road Systems2021Report (Other academic)
    Abstract [en]

    The Swedish government has prioritized achieving a fossil fuel-independent vehicle fleet by 2030 which will require radical transformation of the transport industry. Electrifying the vehicle fleet forms an important part of this transformation. For light vehicles, electrification using batteries and charging during parking is already well advanced. For city buses, charging at bus stops and bus depots is being developed, but for heavy, long-distance road transport, batteries with enough capacity to provide sufficient range would be too cumbersome and too much time would have to be spent stationary for charging.

    One solution might be the introduction of electric roads, supplying the moving vehicle with electricity both to power running and for charging. In the longer term, this approach could also be used for light vehicles and buses.

    The objective of the Research and Innovation Platform for Electric Roads was to enhance Swedish and Nordic research and innovation in this field, this has been done by developing a joint knowledge base through collaboration with research institutions, universities, public authorities, regions, and industries.

    The work of the Research and Innovation Platform was intended to create clarity concerning the socioeconomic conditions, benefits, and other effects associated with electric roads. We have investigated the benefits from the perspectives of various actors, implementation strategies, operation and maintenance standards, proposed regulatory systems, and factors conducive of the acceptance and development of international collaborative activities.

    The project commenced in the autumn of 2016 and the main research continued until December 2019, the work during year 2020 has been focused on knowledge spread and coordination with the Swedish-Germany research collaboration on ERS (CollERS). The results of the Research and Innovation Platform have been disseminated through information meetings, seminars, and four annual international conferences. Reports have been published in the participating partners’ ordinary publication series and on www.electricroads.org. The project was funded by Strategic Vehicle Research and Innovation (FFI) and the Swedish Transport Administration.

    Download full text (pdf)
    fulltext
  • 8.
    Jung, Daniel
    et al.
    Fordonssystem, Institutionen för systemteknik, Linköpings universitet, Sverige.
    Sundström, Christofer
    Fordonssystem, Institutionen för systemteknik, Linköpings universitet, Sverige.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Göteborg, Sverige.
    Hellgren, Jonas
    RISE Research Institutes of Sweden, Göteborg, Sverige.
    Åslund, Jan
    Fordonssystem, Institutionen för systemteknik, Linköpings universitet, Sverige.
    Placering av laddinfrastruktur för fullskaligt elektrifierad kollektivtrafik i Linköping2024In: Sammanställning av referat från Transportforum 2024 / [ed] Fredrik Hellman; Mattias Haraldsson, Linköping: Statens väg- och transportforskningsinstitut , 2024, p. 356-357Conference paper (Other academic)
    Abstract [sv]

    Omställningen mot elektrifierade kollektivtrafiksystem i stadsmiljö går snabbt. Fördelar är minskade luftföroreningar och buller, ökad passagerarkomfort, kostnadsbesparingar, och att biodrivmedel frigörs till andra transportslag. Det finns många tänkbara systemlösningar, exempelvis bussar med stora batterier och depåladdning, eller bussar med mindrebatterier som laddas vid hållplatser eller under körning. Att utreda vilken kombination av delsystem som är mest kostnads- och resurseffektiva är komplext. I det här arbetet har matematiska modeller och optimeringsmetoder utvecklats och applicerats på Linköpings kollektivtransportsystem för att skapa kunskap kring hur placering av laddinfrastruktur påverkar systemlösningen. 

    Inom projektet används publikt GPS-data över alla stadsbussars position i Linköping under ett antal dygn. Informationen används för att kombinerat med höjddata och en longitudinell fordonsmodell beräkna varje buss energiförbrukning under körningen. Laddinfrastruktur har därefter placerats ut för att minimera den totala sträckan laddinfrastruktur som behövs i systemet för att alla fordon ska kunna genomföra sina respektive köruppdrag givet en viss batteristorlek. Detta sker med hjälp av matematisk optimering. Därefter beräknas hur olika val av batteristorlek och laddinfrastruktur påverkar batteriernas åldrande. Vidare har regleralgoritmer för att hantera depåladdningen föreslagits. Algoritmerna baseras på matematiska modeller och optimering, och initiala analyser visar att effektförluster i batterier kraftigt kan reduceras med smart depåtladdning.  

    Resultaten visar att relativt lite laddinfrastruktur resulterar i dryg halvering av batteristorlek i fordonen jämfört med ett scenario där endast laddning vid depå används. I det specifika fallet med Linköpings kollektivtrafik så är många linjer dragna på samma gata ut från resecentrum och det är den gatan som laddinfrastruktur primärt placeras på med använd metod. Som komplement så inkluderar lösningen några ändhållplatser. En del av dessa stannar många bussar vid och en del är anledningen att busslinjen går relativt långt utanför staden, och fordon som kör ofta på aktuell linje behöver ladda vid ändhållplats för att bussen ska klara sitt köruppdrag på samma batteristorlek som övriga bussar. Med omplanering av fordonens omlopp skulle laddning vid dessa fåtal hållplatser sannolikt kunna tas bort. Resultaten visar att det centrala är att placera laddinfrastruktur på plaster där många fordon står eller åker under så lång tid som möjligt, och om det är elväg eller hållplatsladdning är inte det primära. 

  • 9.
    Jöhrens, Julius
    et al.
    ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH, Germany.
    Helms, Hinrich
    ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH, Germany.
    Lambrecht, Udo
    ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH, Germany.
    Spathelf, Felix
    ifeu Institut für Energie- und Umweltforschung Heidelberg GmbH, Germany.
    Mottschall, Moritz
    Öko-Institut eV, Germany.
    Hacker, Florian
    Öko-Institut eV, Germany.
    Jelica, Darijan
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Gustavsson, Martin G. H.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Nebauer, Greger
    Intraplan Consult GmbH, Germany.
    Schubert, Markus
    Intraplan Consult GmbH, Germany.
    Almestrand Linné, Philip
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Nordin, Lina
    VTI Swedish National Road and Transport Research Institute, Sweden.
    Taljegård, Maria
    Chalmers University of Technology, Sweden.
    Connecting Countries by Electric Roads: Methodology for Feasibility Analysis of a Transnational ERS Corridor2021Report (Other academic)
    Abstract [en]

    The present study aims at discussing relevant aspects for a potential roll-out of Electric Road Systems (ERS) on transnational corridors, as well as generally for ERS introduction in Europe.

    Feasibility criteria have thus been developed in order to assess the following topics for specific potential ERS corridor projects:

    • Technical aspects: Which technical prerequisites exist for ERS corridors and to which extent can they expected to be met?
    • Environmental aspects: Which effects can be expected on key environmental indicators?
    • Economic aspects: Can an ERS corridor pose a business case? Could it contribute to the improvement of ERS economy in general?
    • Political aspects: Would an ERS corridor implementation make sense from a political point of view?

    The developed criteria may serve as a toolbox for scrutinizing future transnational ERS corridor projects. In order to illustrate their application, we used them to analyse a potential roll-out of an Electric Road System on a selected highway corridor (424 km) connecting Sweden and Germany, but mainly located on Danish territory. Based on traffic flows and patterns along the corridor route, it was found:

    • A considerable part of the total truck mileage on the corridor is done by vehicles with a rather limited driving distance for pre- and post-haul, assuming the corridor is realized as a stand-alone project, and
    • the CO2 emissions (well-to-wheel) of truck traffic along the corridor route can be significantly reduced if electric trucks are powered by the national electricity mixes expected for the year 2030, and even more if it would be powered purely renewable.

    Although a continuous ERS on the complete corridor route would not be economically feasible under current conditions, the analysis pinpoints sections along the route where the traffic volumes with a sufficient share of operation on a potential ERS are significantly higher. These sections are located in the metropolitan areas of Malmö, Copenhagen and Hamburg. For implementation, peculiarities of the local markets and regulation should be considered, as well as country-specific priorities on decarbonizing road freight transport. Additionally, the identified ERS potential for medium distances will depend on the technical and cost development of battery trucks.

    Our analysis also sheds some light on the role of first transnational corridors within a European roll-out strategy for ERS. Such corridor projects could help to

    • proof the principal strengths of ERS,
    • trigger strategic coordination between the participating countries,
    • foster national ERS roll-out due to synergy effects with the corridor and
    • pave the way for integration of ERS into EU legislation (e.g. AFID, TEN-T planning)
    Download full text (pdf)
    CollERS_Transnational_ERS_20210310
  • 10.
    Leijon, Jennifer
    et al.
    Uppsala University, Sweden.
    Hagman, Jens
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Ghaem Sigarchian, Sara
    RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation. RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Ollas, Patrik
    RISE Research Institutes of Sweden, Built Environment, System Transition and Service Innovation.
    Aalhuizen, Christoffer
    Uppsala University, Sweden.
    Döhler, Jéssica
    Uppsala University, Sweden.
    Boström, Cecilia
    Uppsala University, Sweden.
    Thomas, Karin
    Uppsala University, Sweden.
    Airports with increased electrification – an ongoing project with case studies in Sweden2022In: 35th International Electric Vehicle Symposium and Exhibition (EVS35) Oslo, Norway, June 11-15, 2022, 2022Conference paper (Other academic)
  • 11.
    Ollas, Patrik
    et al.
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources. Chalmers University of Technology, Sweden.
    Ghaem Sigarchian, Sara
    RISE Research Institutes of Sweden, Built Environment, Energy and Resources.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Leijon, Jennifer
    Uppsala University, Sweden.
    Döhler, Jessica Santos
    Uppsala University, Sweden.
    Aalhuizen, Christoffer
    Uppsala University, Sweden.
    Thiringer, Torbjörn
    Chalmers University of Technology, Sweden.
    Thomas, Karin
    Uppsala University, Sweden.
    Evaluating the role of solar photovoltaic and battery storage in supporting electric aviation and vehicle infrastructure at Visby Airport2023In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 352, article id 121946Article in journal (Refereed)
    Abstract [en]

    Following the societal electrification trend, airports face an inevitable transition of increased electric demand, driven by electric vehicles (EVs) and the potential rise of electric aviation (EA). For aviation, short-haul flights are first in line for fuel exchange to electrified transportation. This work studies the airport of Visby, Sweden and the effect on the electrical power system from EA and EV charging. It uses the measured airport load demand from one year’s operation and simulated EA and EV charging profiles. Solar photovoltaic (PV) and electrical battery energy storage systems (BESS) are modelled to analyse the potential techno-economical gains. The BESS charge and discharge control are modelled in four ways, including a novel multi-objective (MO) dispatch to combine self-consumption (SC) enhancement and peak power shaving. Each model scenario is compared for peak power shaving ability, SC rate and pay-back-period (PBP). The BESS controls are also evaluated for annual degradation and associated cost. The results show that the novel MO dispatch performs well for peak shaving and SC, effectively reducing the BESS’s idle periods. The MO dispatch also results in the battery controls’ lowest PBP (6.9 years) using the nominal economic parameters. Furthermore, a sensitivity analysis for the PBP shows that the peak power tariff significantly influences the PBP for BESS investment. 

  • 12.
    Ollas, Patrik
    et al.
    RISE Research Institutes of Sweden; Chalmers University of Technology.
    Ghaem Sigarchian, Sara
    RISE Research Institutes of Sweden.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden.
    Leijon, Jennifer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.
    Santos Döhler, Jessica
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.
    Aalhuizen, Christoffer
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.
    Thiringer, Torbjörn
    Chalmers University of Technology.
    Thomas, Karin
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Electrical Engineering, Electricity.
    Evaluating the role of solar photovoltaic and battery storage in supporting electric aviation and vehicle infrastructure at Visby Airport2023In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 352, article id 121946Article in journal (Refereed)
    Abstract [en]

    Following the societal electrification trend, airports face an inevitable transition of increased electric demand,driven by electric vehicles (EVs) and the potential rise of electric aviation (EA). For aviation, short-haul flightsare first in line for fuel exchange to electrified transportation. This work studies the airport of Visby, Sweden and the effect on the electrical power system from EA and EV charging. It uses the measured airport loaddemand from one year’s operation and simulated EA and EV charging profiles. Solar photovoltaic (PV) and electrical battery energy storage systems (BESS) are modelled to analyse the potential techno-economical gains.The BESS charge and discharge control are modelled in four ways, including a novel multi-objective (MO) dispatch to combine self-consumption (SC) enhancement and peak power shaving. Each model scenario iscompared for peak power shaving ability, SC rate and pay-back-period (PBP). The BESS controls are alsoevaluated for annual degradation and associated cost. The results show that the novel MO dispatch performswell for peak shaving and SC, effectively reducing the BESS’s idle periods. The MO dispatch also results in the battery controls’ lowest PBP (6.9 years) using the nominal economic parameters. Furthermore, a sensitivityanalysis for the PBP shows that the peak power tariff significantly influences the PBP for BESS investment.

    Download full text (pdf)
    fulltext
  • 13.
    Sager, Anna
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Alfredsson, Hampus
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Esbjörnsson, Mattias
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Holmberg, Per-Erik
    RISE Research Institutes of Sweden, Digital Systems, Mobility and Systems.
    Internationell forskning och finansiering för elflyg: Omvärldssanalys2022Report (Other academic)
    Abstract [sv]

    De stora utvecklingsströmmarna inom flyg och luftfarten framgent visar på en fortsatt hållbar utveckling där alternativa drivmedel idag är i ett relativt tidigt stadie, men kommer att fortsätta växa. Elektrifieringen av flyget blir en viktig del i den hållbara omställningen och kommer på en längre tidshorisont, bortom 10 år, sannolikt vara en viktig del av inrikesflyget i Sverige. Denna sammanställning ger en överblick över satsningar från forskningsfinansiärer, pågående och avslutade forsknings- och utvecklingsprojekt, samt framåtblickande forskningsagendor, strategier och färdplaner. Rapportens fokus ligger på EU, samt nationella satsningar i Tyskland, Frankrike, Storbritannien och USA. Beteckningen elflyg har inom ramen för detta uppdrag definierats som antingen (i) elmotordrivet flyg med batterier som primär energibärare, eller (ii) elmotordrivet flyg med vätgas och bränsleceller som primär energibärare. Vad gäller satsningar från forskningsfinansiärer ser vi tydliga skillnader mellan länderna/områdena kring deras upplägg och hur de adresserar elflygsområdet. Genomgången och analysen som i detta arbete gjorts av europeiska och nationella forskningsprogram för EU, Frankrike, Storbritannien, Tyskland och USA visar på flera forskningsinitiativ riktade mot just elektrifiering av luftfart, särskilt inom EU, Storbritannien, Tyskland och USA. Utöver elflygsatsningar finns många satsningar på hållbar luftfart, där elflyg kan ses som en delmängd men där exempelvis hållbara flygbränslen, vätgasförbränning, hybridlösningar, samt andra operationella och ekonomiska åtgärder också är väsentliga inriktningar. I de forskningsagendor, strategier och färdplaner som identifierats inom ramen för uppdraget nämns elflyg på samma sätt oftast som en alternativ lösning för flygets omställning till ökad hållbarhet. Det inkluderas ofta under mer generella rubriker för innovativa, revolutionerande luftfarkoster och disruptiva teknologier, eller klumpas ihop under elektrifiering. I ett försök att syntetisera och tydliggöra framtida behov inom specifika forskningsdomäner för elflyg har vi därför kategoriserat uttryckta forskningsbehov från agendor, strategier och färdplaner. Dessa kategorier beskrivs tydligare i rapporten under rubrik 5 Utpekade framtida forskning- och utvecklingsbehov för elflyg. Vidare, genom att analysera antalet referenser till respektive kategori har vi på detta sätt erhållit ett viktat fokus för varje forskningsdomän (vilket dock inte behöver betyda att framtida forskningsanslag motsvarar dessa viktningar, men bör åtminstone säga något om förväntad tonvikt för respektive domän i framtida forskning). Om dessa viktningar representerar framtida satsningar inom forskningen i dessa regioner kommer följande områden stå i fokus: - Farkostutveckling (exempelvis nya designkoncept och flygplanskonfigurationer, lättviktsmaterial, elektriska drivlinor, kraftfulla och effektiva komponenter) - Infrastruktur (exempelvis standardiserad, tillförlitlig och säker infrastruktur för såväl laddning av batterielektriska flygplan som tillförsel av vätgas, lokal energiproduktion och lagring) - Vätgas/bränslecellsteknik (exempelvis lagring, distribution och användning av kryogen vätgas (LH2) ombord, lätta och isolerade vätgastankar, och övervakningssystem) - Batteriteknik (exempelvis ökad energi- och effekttäthet/densitet, nya kraftfullare batteritekniker och kemi, samt standardisering av batterimoduler för flyg) Det är stora likheter mellan de satsningar som redan gjorts och fokus i de färdplaner och forskningsagendor som publicerats. Detta visar att störst fokus fortsatt ligger på farkost och teknik, men mindre på möjliggörare för implementering av elektrisk luftfart. Det är naturligt att kapitalintensiv teknik med långa utvecklingscykler behöver stöd längre in i omställningsprocessen, men det är samtidigt viktigt att hinder och trösklar för denna omställning inte kvarstår när tekniken är redo för marknadsintroduktion. Det finns en hel del regionala skillnader, dels hur forskningsprogrammen är inriktade, dels vad gäller tillgängligheten av programbeskrivningar. Med reservation för att all typ av forskningsfinansiering inte inkluderas i denna analys då information kan varit mindre tillgänglig, återfinns ändå skillnader i inriktning på dessa. Storbritannien har flera program riktade mot elektrifiering (och automation) inom flygsektorn, även på högre spannet i TRL-skalan. Frankrike har däremot sin forskningsfinansiering inbäddat i generiska forskningsprogram, och där exempelvis inriktning på materialforskning för lätta farkoster. I Tyskland drivs ett stort luftfartsforskningsprogram av DLR, men inte dedikerat till just elflyg, och med en stor del av spannet på TRL-skalan i fokus. Inom Horizon Europe visar en analys av de utlysningar som fortfarande är öppna riktat mot området, att dessa till stor del är så kallade Research and Innovation Actions (RIA) och därmed högre upp på TRL-skalan. För en mer detaljerad förståelse av befintliga satsningar har vi inom detta arbete dessutom identifierat ett 60-tal större projekt inom elflyg som bedrivits under den senaste 5-årsperioden med en total projektomslutning på närmare 260 miljoner Euro.

    Download full text (pdf)
    fulltext
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf