Digitala Vetenskapliga Arkivet

Endre søk
Begrens søket
1 - 14 of 14
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abouzayed, A.
    et al.
    Uppsala Univ, Uppsala, Sweden..
    Rinne, S. S.
    Uppsala Univ, Uppsala, Sweden..
    Wadeea, F.
    Uppsala Univ, Uppsala, Sweden..
    Tano, Hanna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Tolmachev, V.
    Uppsala Univ, Uppsala, Sweden..
    Orlova, A.
    Uppsala Univ, Uppsala, Sweden..
    Conjugation of GRPR-targeting antagonist RM26 to albumin-binding domain extends antagonist's blood circulation and residence in tumours2020Inngår i: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 47, nr SUPPL 1, s. S652-S652Artikkel i tidsskrift (Annet vitenskapelig)
  • 2.
    Abouzayed, Ayman
    et al.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Theranostics.
    Tano, Hanna
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Nagy, Abel
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Rinne, Sara S.
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Theranostics.
    Wadeea, Fadya
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi.
    Kumar, Sharmishtaa
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Westerlund, Kristina
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för immunologi, genetik och patologi, Medicinsk strålningsvetenskap. Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia.
    Eriksson Karlström, Amelie
    KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Orlova, Anna
    Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för läkemedelskemi, Theranostics. Uppsala universitet, Science for Life Laboratory, SciLifeLab. Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Res Centrum Oncotheranost, Tomsk 634050, Russia..
    Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer2020Inngår i: Pharmaceutics, E-ISSN 1999-4923, Vol. 12, nr 10, artikkel-id 977Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of In-nat-DOTA-ABD-RM26 in the presence of human serum albumin was 49 +/- 5 nM. [In-111]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.

    Fulltekst (pdf)
    FULLTEXT01
  • 3.
    Abouzayed, Ayman
    et al.
    Uppsala Univ, Dept Med Chem, S-75183 Uppsala, Sweden..
    Tano, Hanna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Rinne, Sara S.
    Uppsala Univ, Dept Med Chem, S-75183 Uppsala, Sweden..
    Wadeea, Fadya
    Uppsala Univ, Dept Med Chem, S-75183 Uppsala, Sweden..
    Kumar, Sharmishtaa
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Westerlund, Kristina
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75185 Uppsala, Sweden..
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap. KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Prot Sci, Sch Engn Sci Chem Biotechnol & Hlth, S-10691 Stockholm, Sweden..
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, S-75183 Uppsala, Sweden.;Tomsk Polytech Univ, Res Sch Chem & Appl Biomed Sci, Res Centrum Oncotheranost, Tomsk 634050, Russia.;Uppsala Univ, Sci Life Lab, S-75105 Uppsala, Sweden..
    Preclinical Evaluation of the GRPR-Targeting Antagonist RM26 Conjugated to the Albumin-Binding Domain for GRPR-Targeting Therapy of Cancer2020Inngår i: Pharmaceutics, E-ISSN 1999-4923, Vol. 12, nr 10, artikkel-id 977Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The targeting of gastrin-releasing peptide receptors (GRPR) was recently proposed for targeted therapy, e.g., radiotherapy. Multiple and frequent injections of peptide-based therapeutic agents would be required due to rapid blood clearance. By conjugation of the GRPR antagonist RM26 (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) to an ABD (albumin-binding domain), we aimed to extend the blood circulation of peptides. The synthesized conjugate DOTA-ABD-RM26 was labelled with indium-111 and evaluated in vitro and in vivo. The labelled conjugate was stable in PBS and retained specificity and its antagonistic function against GRPR. The half-maximal inhibitory concentration (IC50) of In-nat-DOTA-ABD-RM26 in the presence of human serum albumin was 49 +/- 5 nM. [In-111]In-DOTA-ABD-RM26 had a significantly longer residence time in blood and in tumors (without a significant decrease of up to 144 h pi) than the parental RM26 peptide. We conclude that the ABD-RM26 conjugate can be used for GRPR-targeted therapy and delivery of cytotoxic drugs. However, the undesirable elevated activity uptake in kidneys abolishes its use for radionuclide therapy. This proof-of-principle study justified further optimization of the molecular design of the ABD-RM26 conjugate.

  • 4.
    Banijamali, Mahsan
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Höjer, Pontus
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Haag, Petra
    Karolinska Inst, Dept Oncol Pathol, Solna, Sweden..
    Paz Gomero, Elizabeth
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Stiller, Christiane
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap. KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Kaminskyy, Vitaliy O.
    Karolinska Inst, Dept Oncol Pathol, Solna, Sweden.;Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden..
    Ekman, Simon
    Karolinska Inst, Dept Oncol Pathol, Solna, Sweden.;Karolinska Univ Hosp, Theme Canc, Med Unit Head & Neck Lung & Skin Tumors, Thorac Oncol Ctr, Solna, Sweden..
    Lewensohn, Rolf
    Karolinska Inst, Dept Oncol Pathol, Solna, Sweden.;Karolinska Univ Hosp, Theme Canc, Med Unit Head & Neck Lung & Skin Tumors, Thorac Oncol Ctr, Solna, Sweden..
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Viktorsson, Kristina
    Karolinska Inst, Dept Oncol Pathol, Solna, Sweden..
    Ahmadian, Afshin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis2022Inngår i: Journal of Extracellular Vesicles, E-ISSN 2001-3078, Vol. 11, nr 11, artikkel-id 12277Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.

  • 5.
    Delaney, Samantha
    et al.
    Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Zeglis, Brian M.
    Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
    Site-Specific Photoaffinity Bioconjugation for the Creation of <sup>89</sup>Zr-Labeled Radioimmunoconjugates2023Inngår i: Molecular Imaging and Biology, ISSN 1536-1632, E-ISSN 1860-2002, Vol. 25, nr 6, s. 1104-1114Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Purpose: Site-specific approaches to bioconjugation produce well-defined and homogeneous immunoconjugates with potential for superior in vivo behavior compared to analogs synthesized using traditional, stochastic methods. The possibility of incorporating photoaffinity chemistry into a site-specific bioconjugation strategy is particularly enticing, as it could simplify and accelerate the preparation of homogeneous immunoconjugates for the clinic. In this investigation, we report the synthesis, in vitro characterization, and in vivo evaluation of a site-specifically modified, 89Zr-labeled radioimmunoconjugate created via the reaction between an mAb and an Fc-binding protein bearing a photoactivatable 4-benzoylphenylalanine residue. Procedures: A variant of the Fc-binding Z domain of protein A containing a photoactivatable, 4-benzoylphenylalanine residue — Z(35BPA) — was modified with desferrioxamine (DFO), combined with the A33 antigen-targeting mAb huA33, and irradiated with UV light. The resulting immunoconjugate — DFOZ(35BPA)-huA33 — was purified and characterized via SDS-PAGE, MALDI-ToF mass spectrometry, surface plasmon resonance, and flow cytometry. The radiolabeling of DFOZ(35BPA)-huA33 was optimized to produce [89Zr]Zr-DFOZ(35BPA)-huA33, and the immunoreactivity of the radioimmunoconjugate was determined with SW1222 human colorectal cancer cells. Finally, the in vivo performance of [89Zr]Zr-DFOZ(35BPA)-huA33 in mice bearing subcutaneous SW1222 xenografts was interrogated via PET imaging and biodistribution experiments and compared to that of a stochastically labeled control radioimmunoconjugate, [89Zr]Zr-DFO-huA33. Results: HuA33 was site-specifically modified with Z(35BPA)-DFO, producing an immunoconjugate with on average 1 DFO/mAb, high in vitro stability, and high affinity for its target. [89Zr]Zr-DFOZ(35BPA)-huA33 was synthesized in 95% radiochemical yield and exhibited a specific activity of 2 mCi/mg and an immunoreactive fraction of ~ 0.85. PET imaging and biodistribution experiments revealed that high concentrations of the radioimmunoconjugate accumulated in tumor tissue (i.e., ~ 40%ID/g at 120 h p.i.) but also that the Z(35BPA)-bearing immunoPET probe produced higher uptake in the liver, spleen, and kidneys than its stochastically modified cousin, [89Zr]Zr-DFO-huA33. Conclusions: Photoaffinity chemistry and an Fc-binding variant of the Z domain were successfully leveraged to create a novel site-specific strategy for the synthesis of radioimmunoconjugates. The probe synthesized using this method — DFOZ(35BPA)-huA33 — was well-defined and homogeneous, and the resulting radioimmunoconjugate ([89Zr]Zr-DFOZ(35BPA)-huA33) boasted high specific activity, stability, and immunoreactivity. While the site-specifically modified radioimmunoconjugate produced high activity concentrations in tumor tissue, it also yielded higher uptake in healthy organs than a stochastically modified analog, suggesting that optimization of this system is necessary prior to clinical translation.

  • 6.
    Höjer, Pontus
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Siga, Humam
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Wang, Jun
    Karolinska Institutet, Department of Women's and Children's Health, Biomedicum, Solna, Sweden.
    Jönsson, Håkan
    KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Nanobioteknologi.
    Brodin, Petter
    Karolinska Institutet, Department of Women's and Children's Health, Biomedicum, Solna, Sweden; Imperial College London, Department of immunology and Inflammation, London, UK.
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Ahmadian, Afshin
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.
    Identification of Major Immune Cell Lineages with DBS-ProManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Proteins play a pivotal role in cellular function and heterogeneity. Understanding cellular diversity at the proteome level necessitates sensitive single-cell assays with high throughput. While current sequencing-based methods offer promise, they often face limitations, including reliance on expensive and inaccessible commercial platforms. Here, we have adopted the DBS-Pro method, utilizing site-specific oligonucleotide-conjugated antibodies, to analyze surface proteins in single cells. The method uses cheap degenerated barcode oligonucleotides and a simple microfluidics setup for cell encapsulation. A sample of PBMCs was examined using a panel targeting six separate immune cell markers. Using this panel we could quantify marker expression on 1,307 cells, identifying major immune cell lineages including CD4+ T-cells, CD8+ T-cells, monocytes, and B-cells. While recognizing the need for protocol improvements, our results present a promising approach for single-cell proteomics.

  • 7.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Bioconjugation of antibodies and affinity proteins for the development of novel diagnostic and therapeutic tools2024Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Antibodies and affinity proteins are essential tools in research, diagnostics and therapy. Antibodies have the ability to bind to a large variety of protein targets with great specificity and selectivity, allowing them to be used for identification, or targeted therapy of devastating diseases such as cancer. Bioconjugation to other molecules enables the extension of antibody function, enhancing its capabilities beyond recognition and binding. By attachment of a cytotoxic molecule such as a cytotoxic drug or a radionuclide to the antibody, a cell-killing agent can be directly delivered to the cancer cells, eliciting localized effect and sparing healthy tissues. Selecting a suitable labelling technique to produce high-quality antibody conjugates is a crucial consideration for many applications. Site-specific labelling is an attractive approach, where the cargo is directed to a predefined location on the antibody, resulting in homogeneous and well-characterized conjugates, without impacting its tumour antigen binding properties. Many different methods have been explored; affinity-based strategies serve as the basis of this thesis. Ligands such as the Protein A- derived Z domain and the FcIII peptide bind to the Fc domain on the antibody framework, a suitable location for delivering a selected payload. 

    In this thesis, I have explored affinity ligand-based and glycan engineering-based site-specific antibody labelling methods for the production of antibody conjugates for therapeutic purposes and as research tools. In Papers I-II, we adopted site-specific labelling methods based on the Fc- targeting ligands Z domain and FcIII peptide along with a glycan-modification approach for the preparation of antibody conjugates for radioimmunotherapy (RIT) purposes. Our methods resulted in well-characterized conjugates covalently labelled with a chelator suitable for radiolabelling. The radioimmunoconjugates were evaluated in vivo and showed great potential for future applications in RIT. 

    In Paper III, we aimed to improve an earlier developed PNA-based antibody pretargeting system by adopting different labelling strategies for the production of antibody-PNA conjugates. Such systems hold great potential to increase the uptake of radioactivity in the tumour and decrease exposure of healthy tissues to radiation as well as improve imaging contrast for radioimaging. Here, we demonstrated that by carefully reengineering of both the primary and secondary targeting agents, considerable enhancement can be achieved with PNA-based pretargeting. 

    Apart from their success as therapeutic and diagnostic agents, antibody conjugates are widely established reagents in basic research. As sequencing-based single-cell protein expression analysis assays are becoming more popular, the production of high-quality antibody-oligonucleotide conjugates gains high importance. In such assays, specific antibody-targeted antigens are identified following the amplification and next-generation sequencing of their corresponding barcodes. In Paper IV, we utilize the Z domain for decorating an antibody panel targeting key immune cell markers with unique barcodes. The barcoded antibodies were used in DBS-Pro, a high-throughput and multiplex single-cell protein analysis method. In this project, DBS-Pro was applied for the identification of major immune cell subpopulations in PBMC samples. i In Paper V, we explored as an alternative to RIT, the potential of using affinity ligands based on endogenous peptides for radionuclide therapy. The short peptide RM26, targeting the cancer antigen gastrin-releasing peptide receptor (GRPR), commonly overexpressed in prostate cancer, is a promising candidate for imaging and therapy. Being a short peptide, RM26 suffers from fast blood clearance, which is a challenge for the therapeutic application of such ligands. Our approach to overcome this issue and to extend the circulatory half-life of RM26 is to conjugate the peptide to an albumin-binding domain (ABD) that can bind to HSA, the most abundant protein in our blood, thus achieving prolonged blood residence time. By designing, producing and evaluating several ABD-RM26 conjugate variants, we were able to investigate the effect of molecular composition on the biodistribution and bioavailability of such molecules, and identifying candidates with the most favourable properties for future development. 

    In conclusion, in this thesis I combined recombinant protein techniques with chemical synthesis to produce unique protein conjugates followed by their in vitro and in vivo characterization to evaluate functional and biophysical properties. The experimental work presented in this thesis provides a rationale for the development of novel bioconjugates for a variety of future applications. 

    Download (pdf)
    summary
  • 8.
    Nagy, Abel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Abouzayed, Ayman
    Kanellopoulos, Panagiotis
    Landmark, Fredrika
    Bezverkhnia, Ekaterina
    Tolmachev, Vladimir
    Orlova, Anna
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Evaluation of ABD-linked RM26 conjugates for GRPR-targeted drug deliveryManuskript (preprint) (Annet vitenskapelig)
  • 9.
    Nagy, Abel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Altai, Mohamed
    Granit, Pauline
    Zedan, Wahed
    Storey, Claire
    Park, Julie
    Geres, Susanne
    Thorek, Daniel
    Cerezo-Magaña, Myriam
    Ulmert, David
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinteknologi.
    Optimizing PNA-based pretargeting for enhanced targeted radionuclide therapyManuskript (preprint) (Annet vitenskapelig)
  • 10.
    Nagy, Abel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Ulmert, David
    Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden.
    Zedan, Wahed
    Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
    Storey, Claire M.
    Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
    Park, Julie
    Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
    Geres, Susanne
    Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
    Lückerath, Katharina
    Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany.
    Sjöström, Kjell
    Innovagen AB, Lund, Sweden.
    Westin, Hadis
    Ridgeview AB, Uppsala, Sweden.
    Peekhaus, Norbert
    Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
    Thorek, Daniel LJ
    Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA; Oncologic Imaging Program, Siteman Cancer Center, St. Louis, Missouri, USA.
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Altai, Mohamed
    Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Cancer Centre (LUCC), Lund University, Lund, Sweden.
    Impact of site-specific conjugation strategies on the pharmacokinetics of antibody conjugated radiotherapeutics2024Inngår i: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 280, artikkel-id 116927Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Antibody radionuclide conjugates are an emerging modality for targeted imaging and potent therapy of disseminated disease. Coupling of radionuclides to monoclonal antibodies (mAbs) is typically achieved by applying non-site-specific labelling techniques. With the ambition of reducing variability, increasing labelling efficacy and stability, several site-specific conjugation strategies have been developed in recent years for toxin- and fluorophore-mAb conjugates. In this study, we studied two site-specific labelling strategies for the conjugation of the macrocyclic chelating agent, DOTA, to the anti-Leucine Rich Repeat Containing 15 (LRRC15) mAb DUNP19. Specifically, one approach utilized a DOTA-bearing peptide (FcIII) with a strong affinity for the fragment crystallizable (Fc) domain of the human IgG1 of DUNP19 (DUNP19LF-FcIII-DOTASS), while the other leveraged a chemo-enzymatic technique to substitute the N-linked bi-antennary oligosaccharides in the human IgG1 Fc domain with DOTA (DUNP19LF-gly-DOTASS). To assess if these methods impact the antibody's binding properties and targeting efficacy, comparative in vitro and in vivo studies of the generated DUNP19-conjugates were performed. While the LRRC15 binding of both radioimmunoconjugates remained intact, the conjugation methods had different impacts on their abilities to interact with FcRn and FcγRs. In vitro assessments of DUNP19LF-FcIII-DOTASS and DUNP19LF-gly-DOTASS demonstrated markedly decreased affinity for FcRn and FcγRIIIa (CD16), respectively. DUNP19LF-FcIII-DOTASS demonstrated increased blood and tissue kinetics in vivo, confirming loss of FcRn binding. While the ablated FcγR interaction of DUNP19LF-gly-DOTASS had no immediate impact on in vivo biodistribution, reduced immunotherapeutic effect can be expected in future studies as a result of reduced NK-cells interaction. In conclusion, our findings underscore the necessity for meticulous consideration and evaluation of mAb labelling strategies, extending beyond mere conjugation efficiency and radiolabeling yields. Notably, site-specific labelling methods were found to significantly influence the immunological impact of Fc interactions. Therefore, it is of paramount importance to consider the intended diagnostic or therapeutic application of the construct and to adopt conjugation strategies that ensure the preservation of critical pharmacological properties and functionality of the antibody in use.

  • 11.
    Nagy, Ábel
    et al.
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Ulmert, David
    Zedan, Wahed
    M Storey, Claire
    Park, Julie
    Geres, Susanne
    Lückerath, Katherine
    Sjöström, Kjell
    Peekhaus, Norbert
    Thorek, Dan
    Eriksson Karlström, Amelie
    Altai, Mohamed
    Impact of site-specific conjugation strategies on the pharmacokinetics of antibody conjugated radiotherapeuticsManuskript (preprint) (Annet vitenskapelig)
  • 12.
    Sahu, Siddharth S.
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik.
    Gevari, Moein T.
    Uppsala Univ, Dept Elect Engn, Div Solid State Elect, S-75121 Uppsala, Sweden..
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Gestin, Maxime
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Haag, Petra
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden..
    Lewensohn, Rolf
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden.;Karolinska Univ Hosp, Thorac Oncol Ctr, Med Unit Head & Neck Lung & Skin Tumors, Theme Canc, S-17164 Solna, Sweden..
    Viktorsson, Kristina
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden..
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Dev, Apurba
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik. Uppsala Univ, Dept Elect Engn, Div Solid State Elect, S-75121 Uppsala, Sweden..
    Multi-marker profiling of extracellular vesicles using streaming current and sequential electrostatic labeling2023Inngår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 227, artikkel-id 115142Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.

  • 13.
    Sahu, Siddharth Sourabh
    et al.
    Uppsala Univ, Dept Elect Engn, Angstrom Lab, S-75121 Uppsala, Sweden..
    Cavallaro, Sara
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Haag, Petra
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden..
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Eriksson Karlström, Amelie
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Lewensohn, Rolf
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden.;Karolinska Univ Hosp, Theme Canc, Patient Area Head & Neck Lung & Skin, S-17164 Solna, Sweden..
    Viktorsson, Kristina
    Karolinska Inst, Dept Oncol Pathol, S-17164 Stockholm, Sweden..
    Linnros, Jan
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Dev, Apurba
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik. Uppsala Univ, Dept Elect Engn, Angstrom Lab, S-75121 Uppsala, Sweden..
    Exploiting Electrostatic Interaction for Highly Sensitive Detection of Tumor-Derived Extracellular Vesicles by an Electrokinetic Sensor2021Inngår i: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 13, nr 36, s. 42513-42521Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 x 10(6) particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.

  • 14.
    Sahu, Siddharth Sourabh
    et al.
    Uppsala Univ, Dept Elect Engn, Angstrom Lab, Uppsala, Sweden..
    Stiller, Christiane
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Paz Gomero, Elizabeth
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Nagy, Abel
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap.
    Eriksson Karlström, Amelie
    KTH, Skolan för bioteknologi (BIO), Centra, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Proteinvetenskap.
    Linnros, Jan
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik.
    Dev, Apurba
    KTH, Skolan för teknikvetenskap (SCI), Tillämpad fysik, Fotonik. Uppsala Univ, Dept Elect Engn, Angstrom Lab, Uppsala, Sweden..
    Electrokinetic sandwich assay and DNA mediated charge amplification for enhanced sensitivity and specificity2021Inngår i: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 176, artikkel-id 112917Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An electrical immuno-sandwich assay utilizing an electrokinetic-based streaming current method for signal transduction is proposed. The method records the changes in streaming current, first when a target molecule binds to the capture probes immobilized on the inner surface of a silica micro-capillary, and then when the detection probes interact with the bound target molecules on the surface. The difference in signals in these two steps constitute the response of the assay, which offers better target selectivity and a linear concentration dependent response for a target concentration within the range 0.2-100 nM. The proof of concept is demonstrated by detecting different concentrations of Immunoglobulin G (IgG) in both phosphate buffered saline (PBS) and spiked in E. coli cell lysate. A superior target specificity for the sandwich assay compared to the corresponding direct assay is demonstrated along with a limit of detection of 90 pM in PBS. The prospect of improving the detection sensitivity was theoretically analysed, which indicated that the charge contrast between the target and the detection probe plays a crucial role in determining the signal. This aspect was then experimentally validated by modulating the zeta potential of the detection probe by conjugating negatively charged DNA oligonucleotides. The length of the conjugated DNA was varied from 5 to 30 nucleotides, altering the zeta potential of the detection probe from -9.3 +/- 0.8 mV to -20.1 +/- 0.9 mV. The measurements showed a clear and consistent enhancement of detection signal as a function of DNA lengths. The results presented here conclusively demonstrate the role of electric charge in detection sensitivity as well as the prospect for further improvement. The study therefore is a step forward in developing highly selective and sensitive electrokinetic assays for possible application in clinical investigations.

1 - 14 of 14
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf