Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Gustafsson, Marcus
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Lindfors, Axel
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Anderberg, Stefan
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Ammenberg, Jonas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Biogaslösningar i Norrköping: Potential för produktion och marknad2018Report (Other academic)
    Abstract [en]

    In the municipal Energy plan for 2030, Norrköping has set the goal to increase its energy efficiency by at least 30 % compared to 2005, and that 100 % of the energy sources and fuels used within the geographical area of Norrköping (not including sea and air) will be renewable. Locally produced biogas could contribute towards these goals, and the possibility to produce biogas has previously been investigated in pre-studies on individual facilities in the municipality. While the neighboring municipality of Linköping has had a continuous large-scale biogas production for many years, Norrköping has only had a small production of biogas, despite a similar number of inhabitants and several large industries with waste streams that could potentially be used as substrate for biogas.

    This report presents the results of a project with the goal of mapping and quantifying the potentials for production and use of biogas in Norrköping, to elucidatehow these can  be realized, and what importance  this would have for Norrköping. The project was conducted through a workshop series with participants from BRC partners as well as Region Östergötland, Östgötautmaningen, Biogas Öst, Norrköping Water and Waste, Holmen Paper and Kolmården Zoo. The research questions were approached with a “bottom-up” methodology, departing from the local conditions, and estimates of the potential production and use of biogas were made with focus on different substrate streams and markets, respectively.

    The results show a great, unexploited potential for biogas production in Norrköping, mainly in the agricultural sector and in local pulp and paper mills. There is also a large potential market for biogas in Norrköping. The estimated production potential could, if actualized, cover around 10 – 15 % of the energy demand road transport and shipping as well as the industrial energy gas demand in Norrköping.

    One of the main obstacles to develop the production of biogas in Norrköping is the fact that the substrates, except for at individual industrial plants, are scattered among a large number of facilities and actors. In addition, many potential producers lack the knowledge to produce and sell biogas. Thus, cooperation between different actors is required, for example between substrate owners and biogas producers. Cooperation between different substrate owners for large-scale co-digestion and upgrading to vehicle gas could give economic advantages compared to small-scale facilities.

    Norrköping municipality could be a key actor in the development towards increased local production and use of biogas through strategic infrastructure planning, procurement strategies and mediation of knowledge about biogas to potential producers and users. One way for the municipality to make the work in this area more efficient and effective can be to employ a biogas- or biofuel-coordinator.

  • 2.
    Gustafsson, Marcus
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Lindfors, Axel
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Anderberg, Stefan
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Ammenberg, Jonas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Local potential production, use and conditions for implementation of biogas solutions in Norrköping, Sweden2019Conference paper (Refereed)
    Abstract [en]

    Biogas is expected to make an important contribution to the vision of fossil-free transports in Sweden. However, estimates of the national production potential have taken a top-down perspective, without detailing where the potential exists and how to realise it. This study is made with a bottom-up perspective, investigating the potential for production and use of biogas within different sectors and individual industries in the municipality of Norrköping. Moreover, critical factors and driving actors for realising these potentials are raised and analysed.  The study was conducted with a participatory approach involving 22 representatives from the municipality, biogas producers, interest organisations and companies dealing with potential biogas substrates. The results indicate a potential biogas production of 500 GWh/year by 2030, out of which 60% would come from the agricultural sector and 30% from local pulp and paper industries. A more modest estimate indicate that the production would cover 10 – 15% of the local energy demand for road transport and shipping as well as industrial energy gas.  Substrates are distributed over a large geographical area and between several actors, requiring cooperation between substrate owners to reach an economically feasible scale. In addition, collaboration with biogas companies could provide the substrate owners with necessary specialist knowledge. In order to realise the biogas potential, Norrköping municipality has a central role to play as coordinator and knowledge hub, as well as by directing procurements towards biogas and plan for biogas fuelling stations.

  • 3.
    Lindfors, Axel
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Samhällseffekter av alternativa drivmedel2019Report (Other academic)
    Abstract [sv]

    För att uppnå en fossiloberoende fordonsflotta i Östergötlands krävs ökad elektrifiering och mer biodrivmedel, så kallade alternativa drivmedel. För att uppnå detta mål undersöks i rapporten följande: samhällseffekter från produktion och användning av alternativa drivmedel, samhällseffekternas storleksordningar, samhällseffekternas ursprung (produktion eller användning) samt hur olika alternativa drivmedel ger upphov till olika samhällseffekter.

    Rapporten utgår från Sveriges miljömål och BRP+ för att beskriva vilka samhällseffekter produktion och användning av alternativa drivmedel för med sig. 12 huvudområden och 16 indikatorer formulerades, utifrån Sveriges miljömål och BRP+, och dessa används i rapporten för att bedöma samhällseffekterna av fem olika alternativa drivmedel (biogas, etanol, HVO, el och vätgas). Huvudområdena som bedömdes var ökad resursåtervinning, förbättrad luftkvalitet, ökade investeringar i alternativa drivmedel, ökad biodiversitet och minskad ekotoxicitet, ökad tillgänglighet, minskat buller, minskad försurning & övergödning, ökad regional sysselsättning, ökad regional lönesumma, mer förnybar energi och ökad energisäkerhet, minskad klimatpåverkan samt ökad näringsåtervinning.

    För att belysa samhällseffekternas storleksordningar användes även fyra scenarion med olika stor mängd produktion och användning av alternativa drivmedel. Dessa scenarion applicerades på fyra av huvudområdena: ökad regional sysselsättning, ökad regional lönesumma, mer förnybar energi och ökad energisäkerhet samt minskad klimatpåverkan. Resultatet av detta blev exempelvis att produktion av alternativa drivmedel i framtiden utgöra mellan 0,8 och 1,2 % av den regionala lönesumman samt användning av dessa reducera Östergötlands totala klimatgasutsläpp med mellan 17 % och 52 %. Det stora spannet beror på vilka alternativa drivmedel som produceras samt i vilken mängd.

    Illustrationer gjordes för att visa vilka alternativa drivmedel som ger upphov till vilka samhällseffekter. Dessa visar relativ storlek och om effekten är positiv eller negativ för samhället. Dessa illustrationer visar att det är viktigt att utvärdera alternativa drivmedel ur ett multi-dimensionellt perspektiv för att inte missa externa effekter och mervärden.

    Till sist visade samhällseffektsbedömningen att vissa samhällseffekter endast uppkommer i produktionen respektive användningen av alternativa drivmedel. Om målet är att uppnå så många positiva samhällseffekter som möjligt krävs det alltså både produktion och användning. Idag importeras majoriteten av våra alternativa drivmedel, alltså går vi miste om produktionseffekterna. Detta är med hög sannolikhet en konsekvens av det fokus på användningseffekter, främst klimatpåverkan, som länge dominerat samhällsdebatten på detta ämnesområde. Nu behövs policy, strategier och initiativ som både stimulerar produktion och användning av alternativa drivmedel så att alla positiva samhällseffekter uppnås.

  • 4.
    Lindfors, Axel
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Peltonen Ramkvist, Erika
    Region Östergötland.
    Östergötlands potential för biodrivmedelsproduktion och utökad elektrifiering: Delprojektrapport delprojekt 2: Hållbara transporter i Östergötland2018Report (Other academic)
    Abstract [sv]

    För att möta bestämmelser om en fossiloberoende fordonsflotta och uppfylla direktivet om förnybar energi krävs en ökad mängd biodrivmedel- och elanvändning i fordon. Dessa mål införlivas genom lokala och regionala initiativ runt om i Sverige. Inhemsk produktion av biodrivmedel för med sig en mängd positiva effekter så som säkrad bränsletillgång, ökad lokal sysselsättning, mer skatteintäkter och en säker avfallshantering av organiskt avfall. För att ge underlag till hur Östergötland bör agera för att bidra till en fossiloberoende fordonsflotta inventeras i denna rapport Östergötlands biomassa- och biodrivmedelpotential samt länets elnätskapacitet.

    Studien har applicerat en metod där tidigare studier och intervjuer med sakkunniga legat till grund för datainsamlingen. Därefter har en syntes om hur framtiden för Östergötlands biodrivmedelpotential kan se ut arbetats fram av projektgruppen. Under hela projektets arbetsgång har intressenter varit delaktiga, både med information och data men även i att utforma projektets tillvägagångssätt, upplägg och presentation. Denna höga grad av intressentengagemang bidrar till att resultatet blir mer relevant och att intressenter känner sig mer delaktiga i projektets resultat. Dessutom ökar lärandet från projektet då projektgruppen och intressenter delar med sig mer fritt av erfarenheter och kunskap.

    Resultatet visar att Östergötland har goda förutsättningar för ökad biodrivmedelproduktion och ökad elektrifiering av vägtrafiken. Idag kommer större delen av biodrivmedel i Östergötland från primärråvaror eller avfall från hushåll och kommunala aktiviteter. För att realisera en större potential krävs att lantbruks- och skogsbrukssektorerna involveras i högre grad. De mest lovande substraten som inte idag används är flytgödsel, fastgödsel, vall, avloppsvatten från pappers- och massabruk samt skogsrester. Dessa kan tidigt realiseras och tillsammans står de för en betydande del av potentialen. Östergötlands biodrivmedelspotential uppskattas till 3 400 GWh per år. En stor del av denna potential är svårrealiserad och kräver stora insatser om den ska realiseras till 2030.

    Elnätets kapacitet i Östergötland identifieras inte som något kortsiktigt problem av elnätsbolagen i Östergötland. Om elnätet får problem att hantera en ökad elfordonsflotta ger detta först upphov till elkvalitetsproblem och sedan att nätet kan slås ut. Gällande personbilar kan hushållsnära laddning medföra att elserviser och transformatorer måste förstärkas i vissa områden (framförallt i förorter och på landsbygden). På längre sikt kan en kraftig ökning av eldrivna fordon göra att kapacitet i vissa lokala elnät måste byggas ut. I dessa områden kan finansiering bli en kritisk fråga då potentiella elbilsägare kan välja att avstå från att byta bil om det medför att de måste betala en högre nätavgift. Samtidigt blir sannolikt icke-elbilsägare inte glada om de måste betala en högre avgift för att andra skaffar elbil i deras område. För tung- och busstrafik kan vissa punkter bli kritiska och kräva stora förstärkningar. Större vägstråk, bussdepåer och rastplatser kommer behöva klara av att flera fordon kan ladda med iii hög effekt under samma tid på dagen. På dessa platser behövs sannolikt elnätet förstärkas.

    På grund av att elnätsprojekt ofta har lång ledtid visar analysen av resultatet att el bör prioriteras i personbilar och mindre fordon då de påfrestar elnätet mindre. Denna fordonskategori kan även kompletteras med CBG-fordon (komprimerad biogas) och etanolfordon för att uppnå en högre grad av fossilfria fordon. För tyngre transporter pekar analysen på ED95 (etanoldiesel), LBG (förvätskad biogas), HVO och RME. HVO och RME kan redan idag sättas in i tyngre transporter medan ED95 och LBG är några år bort. På detta sätt fås en kontinuerlig ökning av fossilfria fordon fram till 2030 vilket gynnar klimat, miljö och drivmedelsproducenter.

  • 5.
    Lindfors, Axel
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Feiz, Roozbeh
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Ammenberg, Jonas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Assessing the Potential, Performance and Feasibility of Urban Solutions: Methodological Considerations and Learnings from Biogas Solutions2019In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 14, article id 3756Article in journal (Refereed)
    Abstract [en]

    Many cities of the world are faced with multiple sustainability challenges, for example related to food and energy supply, transportation, waste management, clean air, and more. Preferably, these challenges are addressed with broad and interconnected solutions with the ambition of addressing several challenges simultaneously, in this paper referred to as multi-functional urban solutions. Implementation of multi-functional urban solutions requires well informed decisions, supported by knowledge about the potential contributions that the solutions can make to a more sustainable city as well as on issues that may hinder or facilitate their implementation. Thus, in this paper, we suggest a soft multi-criteria decision analysis method that can be used to gather and structure this knowledge. This method acknowledges the importance of incorporating local knowledge, is based on life-cycle thinking, and is flexible and open-ended by design so that it can be tailored to specific needs and conditions. The method contributes to existing practices in sustainability assessment and feasibility studies, linking and integrating potential and performance assessment with issues affecting solutions’ feasibility of implementation. This method offers a way for local authorities, researchers and exporting companies to organize and structure the diverse range of knowledge to be considered for more informed decisions regarding the implementation of multi-functional urban solutions. While the main contributions of the paper are methodological, brief descriptions of two studies that have applied this method to assess biogas solutions are shown as clarifying examples. One of these studies was performed in Chisinau, Moldova and the other in Johannesburg, South Africa.

  • 6.
    Lindfors, Axel
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management.
    Lärkhammar, Sofie
    Linköping University, Department of Management and Engineering, Environmental Technology and Management.
    If we buy your vehicles, can we produce our own fuel?: An early assessment method for the market expansion of biomethane solutions2017Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Biomethane made from the anaerobic digestion of organic waste can provide several economic and environmental benefits such as: the valorisation of waste products, increased resource efficiency, increased retention of nutrients through recycling of biogas digestate (Banks, et al., 2011), reduction of greenhouse gas emissions (Börjesson, et al., 2016) as well as the reduction of nitrogen oxides and particulate matter emissions (Börjesson & Berglund, 2007).To help actors understand when and where biomethane solutions can succeed, including the qualitative and quantitative aspects of a solution, an Early Assessment Method has been developed. The categories included in the assessment are potential, feasibility, economic and environmental performance. The Early Assessment Method was developed using a multi-criteria framework and consists of 15 key areas and 24 key indicators that should be considered when assessing biomethane solutions. Each quantitative indicator can be assessed either with site-specific data or by using generic equations and average values while the qualitative indicators are given a five-grade scale to facilitate the assessment.The potential category focuses on assessing how much raw material there is in the investigated area and how much of the usable products can be produced. The final areas are: biomass potential, biomethane potential and bio-fertilizer potential. In the feasibility assessment, qualitative aspects are assessed using a five-grade scale. The key areas for feasibility include: customer demand, competing applications, strategies for renewable fuels, legislation, economic instruments and infrastructure suitability. Performance is assessed both for economic performance and environmental performance to understand how the biomethane solution would perform if implemented. Economic performance includes both an indicator for cost per unit produced and an indicator for the investment cost for each production step. The key areas included are: biogas generation cost, biogas upgrading cost and biomethane distribution cost. The environmental performance is evaluated to understand how environmental aspects would change if biomethane replaced an alternative fuel on the market in the studied region. Key areas to assess this are: climate impact, air quality and nutrient recycling. These areas highlight some important benefits of using biomethane over fossil fuels, which are the most common fuels for heavy-duty vehicles.A two-part Early Assessment Tool was also developed. The tool is included in the method, but can be used separately if the user has a basic knowledge of biomethane. It assists with information collection, through a questionnaire, and structuring and presenting data, through a spreadsheet. The design of the Early Assessment Tool favours simplicity and usability while striving to maintain relevant information. It is meant to be used both for educational and investigative purposes when providing an early assessment of biomethane solutions within a certain region. The result from the tool can aid when making decisions and help with identifying which local actors to involve and what consultancy work might be needed to realise a biomethane solution.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf