Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alzeyadi, Ali
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Rawabdeh, Abdulla M.
    Department of Earth and Environmental Science, Yarmouk University, Irbid, Jordan.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    A Novel Coating Method for Create Filter Media Capable to Remove Phosphate from Wastewater Effectively2019In: Engineering, ISSN 1947-3931, E-ISSN 1947-394X, Vol. 11, no 8, p. 443-463Article in journal (Refereed)
    Abstract [en]

    Filtration materials coating with metallic oxides represented a good method for phosphate sorption. However, most of the researchers utilize chemicals as a source of metallic oxides and heating process to set the chemicals over the filtration materials. This study is aimed to introduce the furnace bottom ash FBA as a source of metallic oxides; it is available free because it is dumped as a waste material from power generation plants. The method of creating new filter media involves coating the limestone and sand by FBA, and the ordinary Portland cement OPC utilized as binder to binding the mixture materials. The water is the factor which is responsible for activating the OPC. All factors such as mixed materials ratio, water content and age of reaction have subjected to optimization process. The results revealed that the optimal mixture for phosphate removal consists of 40% FBA, 5% OPC from dry weight of supporting material, 35% water ratio from the total weight of FBA and OPC, and 14 days are enough to complete the materials reaction. Limestone-furnace bottom ash LFBA indicated high capacity for phosphate sorption and possibility  of  efficiency  regenerate.  This  study  demonstrates  a  new  method  for coating the filtration materials more convenient with sustainability approach.

  • 2.
    Alzeyadi, Ali
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Al-Ansari, Nadhir
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Laue, Jan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
    Alattabi, Ali
    School of Civil Engineering, Liverpool John Moores University, Liverpool, United Kingdom.
    Study of Biomass Bottom Ash Efficiency as Phosphate Sorbent Material2019In: Civil Engineering Journal, ISSN 2476-3055, Vol. 11, no 5, p. 2392-2401Article in journal (Refereed)
    Abstract [en]

    Excessive richness of nutrients in water bodies such as rivers, lakes and ponds lead into deterioration of aquatic life as a results of dense growth of algae. Phosphate is one of the main nutrients that should be controlled to prevent this serious issue. Utilizing low cost material as a phosphate sorbent is offering a treatment method characterized as a sustainable solution. In this study the efficiency of biomass bottom ash BBA as phosphate sorbent material from aqueous solution is investigated. Batch experiments were undertaken, in which a particular mass of BBA was brought into contact with the phosphate solution. The experiments studied the influence of pH (different phosphate solutions were prepared with pH range 4 to 8), temperature (adsorption capacity measured at the temperature range of 10 to 30 °C), and contact time. In addition, the adsorption isotherm models were also applied to better understand the mechanism of phosphate sorption by BBA. The results revealed that the bonding between the cations (BBA surface) and anions (phosphate solution) is significantly affected by the pH of the solution. BBA presents an excellent phosphate sorption, especially, at low pH value and temperature around 20 oC. The method of this research can be adopted as a followed strategy for examination the capability of selected material for phosphorus removal from wastewater.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf