Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brooke, Robert
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Edberg, Jesper
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Petsagkourakis, Ioannis
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Freitag, Kathrin
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Mulla, Mohammad Yusuf
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Nilsson, Marie
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Isacsson, Patrik
    Linköping University, Sweden; Ahlstrom Group Innovation, France.
    Andersson Ersman, Peter
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Paper Electronics Utilizing Screen Printing and Vapor Phase Polymerization2023In: Advanced Sustainable Systems, ISSN 2366-7486, Vol. 7, no 7, article id 2300058Article in journal (Refereed)
    Abstract [en]

    The rise of paper electronics has been accelerated due to the public push for sustainability. Electronic waste can potentially be avoided if certain materials in electronic components can be substituted for greener alternatives such as paper. Within this report, it is demonstrated that conductive polymers poly(3,4-ethylenedoxythiophene) (PEDOT), polypyrrole, and polythiophene, can be synthesized by screen printing combined with vapor phase polymerization on paper substrates and further incorporated into functional electronic components. High patterning resolution (100 µm) is achieved for all conductive polymers, with PEDOT showing impressive sheet resistance values. PEDOT is incorporated as conductive circuitry and as the active material in all-printed electrochromic displays. The conductive polymer circuits allow for functional light emitting diodes, while the electrochromic displays are comparable to commercial displays utilizing PEDOT on plastic substrates. 

  • 2.
    Edberg, Jesper
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Boda, Ulrika
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Linköping University, Sweden.
    Mulla, Yusuf
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Brooke, Robert
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Pantzare, Sandra
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Strandberg, Jan
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Fall, Andreas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Economou, Konstantin
    Linköping University, Sweden.
    Beni, Valerio
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Armgarth, Astrid
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    A Paper‐Based Triboelectric Touch Interface: Toward Fully Green and Recyclable Internet of Things2023In: Advanced Sensor Research, Vol. 2, no 1, article id 2200015Article in journal (Refereed)
    Abstract [en]

    The transition to a sustainable society is driving the development of green electronic solutions designed to have a minimal environmental impact. One promising route to achieve this goal is to construct electronics from biobased materials like cellulose, which is carbon neutral, non‐toxic, and recyclable. This is especially true for internet‐of‐things devices, which are rapidly growing in number and are becoming embedded in every aspect of our lives. Here, paper‐based sensor circuits are demonstrated, which use triboelectric pressure sensors to help elderly people communicate with the digital world using an interface in the form of an electronic “book”, which is more intuitive to them. The sensors are manufactured by screen printing onto flexible paper substrates, using in‐house developed cellulose‐based inks with non‐hazardous solvents. The triboelectric sensor signal, generated by the contact between a finger and chemically modified cellulose, can reach several volts, which can be registered by a portable microcontroller card and transmitted by Bluetooth to any device with an internet connection. Apart from the microcontroller (which can be easily removed), the whole system can be recycled at the end of life. A triboelectric touch interface, manufactured using printed electronics on flexible paper substrates, using cellulose‐based functional inks is demonstrated. These metal‐free green electronics circuits are implemented in an “electronic book” demonstrator, equipped with wireless communication that can control remote devices, as a step toward sustainable and recyclable internet‐of‐things devices.

  • 3.
    Edberg, Jesper
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    Mulla, Yusuf
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    Hosseinaei, Omid
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design. Digital Cellulose Center, Sweden.
    Ul Hassan Alvi, Naveed
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    Beni, Valerio
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    A Forest-Based Triboelectric Energy Harvester2022In: Global Challenges, E-ISSN 2056-6646, Vol. 6, no 10, article id 2200058Article in journal (Refereed)
    Abstract [en]

    Triboelectric nanogenerators (TENGs) are a new class of energy harvesting devices that have the potential to become a dominating technology for producing renewable energy. The versatility of their designs allows TENGs to harvest mechanical energy from sources like wind and water. Currently used renewable energy technologies have a restricted number of materials from which they can be constructed, such as metals, plastics, semiconductors, and rare-earth metals. These materials are all non-renewable in themselves as they require mining/drilling and are difficult to recycle at end of life. TENGs on the other hand can be built from a large repertoire of materials, including materials from bio-based sources. Here, a TENG constructed fully from wood-derived materials like lignin, cellulose, paper, and cardboard, thus making it 100% green, recyclable, and even biodegradable, is demonstrated. The device can produce a maximum voltage, current, and power of 232 V, 17 mA m–2, and 1.6 W m–2, respectively, which is enough to power electronic systems and charge 6.5 µF capacitors. Finally, the device is used in a smart package application as a self-powered impact sensor. The work shows the feasibility of producing renewable energy technologies that are sustainable both with respect to their energy sources and their material composition. © 2022 The Authors. 

  • 4.
    Kostić, Milos
    et al.
    Tecnalia Serbia Ltd, Serbia.
    Kojić, Vladimir
    Soultronic International Ltd, Serbia.
    Ičagić, Savo
    Tecnalia Serbia Ltd, Serbia.
    Andersson Ersman, Peter
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Mulla, Mohammad Yusuf
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Strandberg, Jan
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Herlogsson, Lars
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Keller, Thierry
    TECNALIA, Spain.
    Štrbac, Matija
    Tecnalia Serbia Ltd, Serbia.
    Design and Development of OECT Logic Circuits for Electrical Stimulation Applications2022In: Applied Sciences, E-ISSN 2076-3417, Vol. 12, no 8, article id 3985Article in journal (Refereed)
    Abstract [en]

    This paper presents the first successful implementation of fully printed electronics for flexible and wearable smart multi-pad stimulation electrodes intended for use in medical, sports and lifestyle applications. The smart multi-pad electrodes with the electronic circuits based on organic electrochemical transistor (OECT)-based electronic circuits comprising the 3–8 decoder for active pad selection and high current throughput transistors for switching were produced by multi-layer screen printing. Devices with different architectures of switching transistors were tested in relevant conditions for electrical stimulation applications. An automated testbed with a configurable stimulation source and an adjustable human model equivalent circuit was developed for this purpose. Three of the proposed architectures successfully routed electrical currents of up to 15 mA at an output voltage of 30 V, while one was reliably performing even at 40 V. The presented results demonstrate feasibility of the concept in a range of conditions relevant to several applications of electrical stimulation. © 2022 by the authors

  • 5.
    Kuppuswamy, G. P.
    et al.
    SRM Institute of Science and Technology, India.
    Shabanur Matada, M. S.
    SRM Institute of Science and Technology, India.
    Marappan, G.
    SRM Institute of Science and Technology, India.
    Mulla, Yusuf M
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Velappa Jayaraman, S.
    SRM Institute of Science and Technology, India; Tohoku University, India.
    Di Natale, C.
    University of Rome, Italy.
    Sivalingam, Y.
    SRM Institute of Science and Technology, India.
    NiOX Template-Grown Ni-MOF-Coated Carbon Paper Electrode Embedded Extended Gate Field Effect Transistor for Glucose Detection in Saliva: En Route toward the Noninvasive Diagnosis of Diabetes Mellitus2023In: ACS Applied Electronic Materials, ISSN 2637-6113, Vol. 5, no 6, p. 3268-Article in journal (Refereed)
    Abstract [en]

    Our present work focuses on the development of nickel oxalate (NiOX) template-assisted growth of a nickel-metal organic framework (Ni-MOF) with sheetlike morphology on carbon paper (CP) electrode for the noninvasive detection of glucose. We have utilized an extended gate field effect transistor (EGFET) where the Ni-MOF/CP electrode serves as the extended gate of a commercial n-type metal oxide semiconductor FET for sensing glucose. The electrode detects glucose concentrations ranging from 20 μM to 1.47 mM. The sensor operates at a voltage of 0.7 V in the physiologically relevant electrolyte of phosphate-buffered saline (PBS) with a response time of less than 5 s. The sensitivity is calculated as 86 μA mM-1 cm-2 from the linear region of the sensor response to the glucose concentration (20 μM to 0.27 mM). Also, Ni-MOF/CP has shown a good selective response toward glucose against uric acid, sucrose, fructose, and ascorbic acid. Additionally, the glucose sensing mechanism is investigated through work function changes of the sensing electrode using a scanning Kelvin probe. Real-time sample testing has revealed that the sensor preserves the sensitivity in human saliva too. In summary, we conclude that the Ni-MOF/CP extended gate electrode EGFET is an alternative device for salivary glucose detection toward the noninvasive diagnosis of diabetes mellitus that can identify hyperglycemic, normal, and hypoglycemic conditions. 

  • 6.
    Mulla, Yusuf
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Isacsson, Patrik
    Linköping University, Sweden; Ahlstrom Group Innovation, France.
    Dobryden, Illia
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design. Linköping University, Sweden; Ahlstrom Group Innovation, Sweden.
    Beni, Valerio
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Östmark, Emma
    Stora Enso AB, Sweden.
    Håkansson, Karl
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design.
    Edberg, Jesper
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Bio-Graphene Sensors for Monitoring Moisture Levels in Wood and Ambient Environment2023In: Global Challenges, E-ISSN 2056-6646, Vol. 7, no 4Article in journal (Refereed)
    Abstract [en]

    Wood is an inherently hygroscopic material which tends to absorb moisture from its surrounding. Moisture in wood is a determining factor for the quality of wood being employed in construction, since it causes weakening, deformation, rotting, and ultimately leading to failure of the structures resulting in costs to the economy, the environment, and to the safety of residents. Therefore, monitoring moisture in wood during the construction phase and after construction is vital for the future of smart and sustainable buildings. Employing bio-based materials for the construction of electronics is one way to mitigate the environmental impact of such electronics. Herein, a bio-graphene sensor for monitoring the moisture inside and around wooden surfaces is fabricated using laser-induced graphitization of a lignin-based ink precursor. The bio-graphene sensors are used to measure humidity in the range of 10% up to 90% at 25 °C. Using laser induced graphitization, conductor resistivity of 18.6 Ω sq−1 is obtained for spruce wood and 57.1 Ω sq−1 for pine wood. The sensitivity of sensors fabricated on spruce and pine wood is 2.6 and 0.74 MΩ per % RH. Surface morphology and degree of graphitization are investigated using scanning electron microscopy, Raman spectroscopy, and thermogravimetric analysis methods. © 2023 The Authors. 

  • 7.
    Mulla, Yusuf
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware.
    Torsi, Luisa
    Università degli Studi di Bari “A. Moro”, Italy; CSGI Centre for Colloid and Surface Science, Italy; Åbo Akademi University, Finland.
    Manoli, Kyriaki
    Università degli Studi di Bari “A. Moro”, Italy; CSGI Centre for Colloid and Surface Science, Italy.
    Electronic biosensors based on EGOFETs2020In: Methods in Enzymology, Academic Press Inc. , 2020Chapter in book (Refereed)
    Abstract [en]

    There is an increasing interest for low cost, ultrasensitive, time saving yet reliable, point-of-care bioelectronic sensors. Electrolyte gated organic field effect transistors (EGOFETs) are proven compelling transducers for various sensing applications, offering direct electronic, label-free transduction of bio-recognition events along with miniaturization, fast data handling and processing. Given that field effect transistors act as intrinsically signal amplifiers, even a small change of a chemical or biological quantity may significantly alter the output electronic signal. In EGOFETs selectivity can be guaranteed by the immobilization of bioreceptors able to bind specifically a target analyte. The layer of receptors can be linked to one of the electronic active interfaces of the transistor, and the interactions with a target molecule affect the electronic properties of the device. The present chapter discusses main aspects of EGOFETs transducers along with detailed examples of how to tailor the device interfaces with desired functionality. The development of an “electronic tongue” based on an EGOFET device coupled to odorant binding proteins (OBPs) for enantiomers differentiation is presented. 

  • 8.
    Ul Hassan Alvi, Naveed
    et al.
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    Mulla, Yusuf
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    Abitbol, Tiffany
    RISE Research Institutes of Sweden. Digital Cellulose Center, Sweden.
    Fall, Andreas
    RISE Research Institutes of Sweden, Bioeconomy and Health, Material and Surface Design. Digital Cellulose Center, Sweden.
    Beni, Valerio
    RISE Research Institutes of Sweden, Digital Systems, Smart Hardware. Digital Cellulose Center, Sweden.
    The Fast and One-Step Growth of ZnO Nanorods on Cellulose Nanofibers for Highly Sensitive Photosensors2023In: Nanomaterials, E-ISSN 2079-4991, Vol. 13, no 18, article id 2611Article in journal (Refereed)
    Abstract [en]

    Cellulose is the most abundant organic material on our planet which has a key role in our daily life (e.g., paper, packaging). In recent years, the need for replacing fossil-based materials has expanded the application of cellulose and cellulose derivatives including into electronics and sensing. The combination of nanostructures with cellulose nanofibers (CNFs) is expected to create new opportunities for the development of innovative electronic devices. In this paper, we report on a single-step process for the low temperature (<100 °C), environmentally friendly, and fully scalable CNF-templated highly dense growth of zinc oxide (ZnO) nanorods (NRs). More specifically, the effect of the degree of substitution of the CNF (enzymatic CNFs and carboxymethylated CNFs with two different substitution levels) on the ZnO growth and the application of the developed ZnO NRs/CNF nanocomposites in the development of UV sensors is reported herein. The results of this investigation show that the growth and nature of ZnO NRs are strongly dependent on the charge of the CNFs; high charge promotes nanorod growth whereas with low charge, ZnO isotropic microstructures are created that are not attached to the CNFs. Devices manufactured via screen printing/drop-casting of the ZnO NRs/CNF nanocomposites demonstrate a good photo-sensing response with a very stable UV-induced photocurrent of 25.84 µA. This also exhibits excellent long-term stability with fast ON/OFF switching performance under the irradiance of a UV lamp (15 W). 

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf