Change search
Refine search result
1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Iakunkov, Artem
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Klechikov, Alexey
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sun, Jinhua
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Steenhaut, Timothy
    Hermans, Sophie
    Filinchuk, Yaroslav
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Gravimetric tank method to evaluate material-enhanced hydrogen storage by physisorbing materials2018In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 44, p. 27983-27991Article in journal (Refereed)
    Abstract [en]

    The most common methods to evaluate hydrogen sorption (volumetric and gravimetric) require significant experience and expensive equipment for providing reproducible results. Both methods allow one to measure excess uptake values which are used to calculate the total amount of hydrogen stored inside of a tank as required for applications. Here we propose an easy to use and inexpensive alternative approach which allows one to evaluate directly the weight of hydrogen inside a material-filled test tank. The weight of the same tank filled with compressed hydrogen in the absence of loaded material is used as a reference. We argue that the only parameter which is of importance for hydrogen storage applications is by how much the material improves the total weight of hydrogen inside of the given volume compared to compressed gas. This parameter which we propose to name Gain includes both volumetric and gravimetric characterization of the material; it can be determined directly without knowing the skeletal volume of the material or excess sorption. The feasibility of the Gravimetric Tank (GT) method was tested using several common carbon and Metal Organic Framework (MOF) materials. The best Gain value of ∼12% was found for the Cu-BTC MOF which means that the tank completely filled with this material stores a 12% higher amount of hydrogen compared to H2 gas at the same PTconditions. The advantages of the GT method are its inexpensive design, extremely simple procedures and direct results in terms of tank capacity as required for industrial applications. The GT method could be proposed as a standard check for verification of the high hydrogen storage capacity of new materials. The GT method is expected to provide even better accuracy for evaluation of a material's performance for storage of denser gases like e.g. CO2 and CH4.

  • 2.
    Iakunkov, Artem
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Skrypnychuk, Vasyl
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Nordenström, Andreas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Shilayeva, Elizaveta A.
    Korobov, Mikhail
    Prodana, Mariana
    Enachescu, Marius
    Larsson, Sylvia H.
    Talyzin, Aleksandr V.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Activated graphene as a material for supercapacitor electrodes: effects of surface area, pore size distribution and hydrophilicity2019In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 21, no 32, p. 17901-17912Article in journal (Refereed)
    Abstract [en]

    Activated reduced graphene oxide (a-rGO) is a material with a rigid 3D porous structure and high specific surface area (SSA). Using variation of activation parameters and post-synthesis mechanical treatment we prepared two sets of materials with a broad range of BET (N2) SSA ∼1000–3000 m2 g−1, and significant differences in pore size distribution and oxygen content. The performance of activated graphene as an electrode in a supercapacitor with KOH electrolyte was correlated with the structural parameters of the materials and water sorption properties. a-rGO is a hydrophobic material as evidenced by the negligibly small BET (H2O) SSA determined using analysis of water vapor sorption isotherms. However, the total pore volume determined using water vapor sorption and sorption of liquid water is almost the same as the one found by analysis of nitrogen sorption isotherms. Ball milling is found to provide an improved bulk density of activated graphene and collapse of all pores except the smallest ones (<2 nm). A decrease in the activation temperature from 850 °C to 550 °C is found to result in materials with a narrow micropore size distribution and increased oxygen content. Elimination of mesopores using ball milling or a lower activation temperature provided materials with better specific capacitance despite a significant decrease (by ∼30%) of the BET (N2) SSA. The best gravimetric and volumetric capacitances in KOH electrolyte were achieved not for samples with the highest value of the BET (N2) SSA but for materials with 80–90% of the total pore volume in micropores and an increased BET (H2O) SSA. Comparing the performance of electrodes prepared using rGO and a-rGO shows that a more hydrophilic surface is favorable for charge storage in supercapacitors with KOH electrolyte.

  • 3.
    Iakunkov, Artem
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sun, Jinhua
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Rebrikova, Anastasia
    Korobov, Mikhail
    Klechikov, Alexey
    Umeå University, Faculty of Science and Technology, Department of Physics. Department of Physics and Astronomy, Uppsala University, Uppsala, 751 20, Sweden.
    Vorobiev, Alexei
    Boulanger, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Talyzin, Aleksandr V.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Swelling of graphene oxide membranes in alcohols: effects of molecule size and air ageing.2019In: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 7, p. 11331-11337Article in journal (Refereed)
    Abstract [en]

    Swelling of Hummers graphene oxide (HGO) membranes in a set of progressively longer liquid alcohols (methanol to 1-nonanol) was studied using synchrotron radiation XRD after air ageing over prolonged periods of time. Both precursor graphite oxides and freshly prepared HGO membranes were found to swell in the whole set of nine liquid alcohols with an increase of interlayer spacing from ∼7 Å (solvent free) up to ∼26 Å (in 1-nonanol). A pronounced effect of ageing on swelling in alcohols was found for HGO membranes stored in air. The HGO membranes aged for 0.5–1.5 years show progressively slower swelling kinetics, a non-monotonic decrease of saturated swelling in some alcohols and complete disappearance of swelling for alcohol molecules larger than hexanol. Moreover, the HGO membranes stored under ambient conditions for 5 years showed a nearly complete absence of swelling in all alcohols but preserved swelling in water. In contrast, precursor graphite oxide powder showed unmodified swelling in alcohols even after 4 years of ageing. Since the swelling defines the size of permeation channels, the ageing effect is one of the important parameters which could explain the strong variation in reported filtration/separation properties of GO membranes. The time and conditions of air storage require standardization for better reproducibility of results related to performance of GO membranes in various applications. The ageing of GO membranes can be considered not only as a hindrance/degradation for certain applications, but also as a method to tune the swelling properties of HGO membranes for better selectivity in sorption of solvents and for achieving better selective permeability.

  • 4.
    Kim, Y
    et al.
    Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
    Abou-Hamad, Edy
    CNRS Université Montpellier 2, France .
    Rubio, Angelo
    European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco UPV/EHU, Spain .
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boesch, D
    Department of Physics, University of California, Berkeley, California 94720 USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA .
    Aloni, S
    Department of Physics, University of California, Berkeley, California 94720 USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA .
    Zettl, Alex
    Department of Physics, University of California, Berkeley, California 94720 USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA .
    Luzzi, David E.
    Department of Materials Science and Engineering, University of Pennsylvania, USA .
    Goze-Bac, Christophe
    CNRS Université Montpellier 2, France .
    Nanomagnetic shielding: High-resolution NMR in carbon allotropes2010In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 132, p. 021102-Article in journal (Refereed)
    Abstract [en]

    Theunderstanding and control of the magnetic properties of carbon-based materialsis of fundamental relevance in applications in nano- and biosciences.Ring currents do play a basic role in those systems.In particular the inner cavities of nanotubes offer an idealenvironment to investigate the magnetism of synthetic materials at thenanoscale. Here, by means of 13C high resolution NMR ofencapsulated molecules in peapod hybrid materials, we report the largestdiamagnetic shifts (down to −68.3 ppm) ever observed in carbonallotropes, which is connected to the enhancement of the aromaticityof the nanotube envelope upon doping. This diamagnetic shift canbe externally controlled by in situ modifications such as dopingor electrostatic charging. Moreover, defects such as C-vacancies, pentagons, andchemical functionalization of the outer nanotube quench this diamagnetic effectand restore NMR signatures to slightly paramagnetic shifts compared tononencapsulated molecules. The magnetic interactions reported here are robust phenomenaindependent of temperature and proportional to the applied magnetic field.The magnitude, tunability, and stability of the magnetic effects makethe peapod nanomaterials potentially valuable for nanomagnetic shielding in nanoelectronicsand nanobiomedical engineering

  • 5.
    Klechikov, Alexey
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sun, Jinhua
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Baburin, Igor A.
    Seifert, Gotthard
    Rebrikova, Anastasiia T.
    Avramenko, Natalya V.
    Korobov, Mikhail V.
    Talyzin, Alexandr V.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Multilayered intercalation of 1-octanol into Brodie graphite oxide2017In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 9, no 20, p. 6929-6936Article in journal (Refereed)
    Abstract [en]

    Multilayered intercalation of 1-octanol into the structure of Brodie graphite oxide (B-GO) was studied as a function of temperature and pressure. Reversible phase transition with the addition/removal of one layer of 1-octanol was found at 265 K by means of X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The same transition was observed at ambient temperature upon a pressure increase above 0.6 GPa. This transition was interpreted as an incongruent melting of the low temperature/high pressure B-GO intercalated structure with five layers of 1-octanol parallel to GO sheets (L-solvate), resulting in the formation of a four-layered structure that is stable under ambient conditions (A-solvate). Vacuum heating allows the removal of 1-octanol from the A-solvate layer by layer, while distinct sets of (00 l) reflections are observed for three-, two-, and one-layered solvate phases. Step by step removal of the 1-octanol layers results in changes of distance between graphene oxide planes by similar to 4.5 angstrom. This experiment proved that both L- and A-solvates are structures with layers of 1-octanol parallel to GO planes. Unusual intercalation with up to five distinct layers of 1-octanol is remarkably different from the behaviour of small alcohol molecules (methanol and ethanol), which intercalate B-GO structure with only one layer under ambient conditions and a maximum of two layers at lower temperatures or higher pressures. The data presented in this study make it possible to rule out a change in the orientation of alcohol molecules from parallel to perpendicular to the GO planes, as suggested in the 1960s to explain larger expansion of the GO lattice due to swelling with larger alcohols.

  • 6.
    Sandström, Robin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Annamalai, Alagappan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boulanger, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ekspong, Joakim
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Mühlbacher, Inge
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Evaluation of Fluorine and Sulfonic Acid Co-functionalized Graphene Oxide Membranes in Hydrogen Proton Exchange Membrane Fuel Cell Conditions2019In: Sustainable Energy & Fuels, ISSN 2398-4902, Vol. 3, no 7, p. 1790-1798Article in journal (Refereed)
    Abstract [en]

    The use of graphene oxide (GO) based membranes consisting of self-assembled flakes with a lamellar structure represents an intriguing strategy to spatially separate reactants while facilitating proton transport in proton exchange membranes (PEM). Here we chemically modify GO to evaluate the role of fluorine and sulfonic acid groups on the performance of H2/O2 based PEM fuel cells. Mild fluorination is achieved by the presence of hydrogen fluoride during oxidation and subsequent sulfonation resulted in fluorine and SO3- co-functionalized GO. Membrane electrode assembly performance in low temperature and moderate humidity conditions suggested that both functional groups contribute to reduced H2 crossover compared to appropriate reference membranes. Moreover, fluorine groups promoted an enhanced hydrolytic stability while contributing to prevent structural degradation after constant potential experiments whereas sulfonic acid demonstrated a stabilizing effect by preserving proton conductivity.

  • 7. Sun, Jinhua
    et al.
    Iakunkov, Artem
    Rebrikova, Anastasia
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Talyzin, Alexandr V.
    Exactly matched pore size for the intercalation of electrolyte ions determined using the tunable swelling of graphite oxide in supercapacitor electrodes2018In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 10, no 45, p. 21386-21395Article in journal (Refereed)
    Abstract [en]

    The intercalation of solvent molecules and ions into sub-nanometer-sized pores is one of the most disputed subjects in the electrochemical energy storage applications of porous materials. Here, we demonstrate that the temperature- and concentration-dependent swelling of graphite oxide (GO) can be used to determine the smallest pore size required for the intercalation of electrolyte ions into hydrophilic pores. The structure of Brodie graphite oxide (BGO) in acetonitrile can be temperature-switched between the ambient one-layer solvate with an interlayer distance of approximate to 8.9 angstrom and the two-layer solvate (approximate to 12.5 angstrom) at low temperature, thus providing slit pores of approximately 2.5 and 6 angstrom. Using in situ synchrotron radiation X-ray diffraction (XRD) and the temperature dependence of capacitance in supercapacitor devices, we found that solvated tetraethylammonium tetrafluoroborate (TEA-BF4) ions do not penetrate into both the 2.5 and 6 angstrom slit pores formed by BGO interlayers. However, increasing the electrolyte concentration results in the formation of a new phase at low temperature. This phase shows a distinct interlayer distance of approximate to 15-16.6 angstrom, which corresponds to the insertion of partly desolvated TEA-BF4 ions. Therefore, the remarkable ability of the GO structure to adopt variable interlayer distances allows for the determination of pore sizes that are optimal for solvated TEA-BF4 ions (about 9-10 angstrom). The intercalation of TEA-BF4 ions into the BGO structure is also detected as an anomaly in the temperature dependence of supercapacitor performance. The BGO structure remains to be expanded, even after the removal of acetonitrile, adopting an interlayer distance of approximate to 10 angstrom.

  • 8.
    Sun, Jinhua
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Klechikov, Alexey
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Moise, Calin
    Prodana, Mariana
    Enachescu, Marius
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Department of Physics.
    A Molecular Pillar Approach To Grow Vertical Covalent Organic Framework Nanosheets on Graphene: Hybrid Materials for Energy Storage2018In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 57, no 4, p. 1034-1038Article in journal (Refereed)
    Abstract [en]

    Hybrid 2D–2D materials composed of perpendicularly oriented covalent organic frameworks (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF-1 nanosheets (v-COF-GO). The hybrid material has a forest of COF-1 nanosheets with a thickness of 3 to 15 nm in edge-on orientation relative to GO. The reaction performed without molecular pillars resulted in uncontrollable growth of thick COF-1 platelets parallel to the surface of GO. The v-COF-GO was converted into a conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge-on orientation. It was demonstrated as a high-performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D-2D materials with control of their relative orientation.

1 - 8 of 8
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf