Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Allard, Ingrid
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Achieving building energy performance: requirements and evaluation methods for residential buildings in Sweden, Norway, and Finland2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Building energy performance has always been important in the cold climate of Sweden, Norway and Finland. To meet the goal that all new buildings should be nearly zero-energy buildings by 2020, set in the EU directive 2010/31/EU [1] on the energy performance of buildings (EPBD recast), the building sector in Europe now faces a transition towards buildings with improved energy performance. In such a transition, a discussion is needed about the objective of the improvement – why, or to what end, the building energy performance should be improved. The objective of improving building energy performance is often a political decision, but scientific research can contribute with knowledge on how the objectives can be achieved.

    This thesis addresses how the indicators used in the requirements used to achieve building energy performance in Sweden, Norway, and Finland, and the methods used to evaluate these requirements, reflect building energy performance. It also addresses difficulties in achieving comparable and verifiable indicators in evaluations of building energy performance. The research objective has two parts: to review, compare, and discuss (i) requirements and (ii) evaluation methods used to achieve energy performance of residential buildings in Sweden, Norway and Finland. The work in this thesis includes reviews of the requirements used in national building codes and passive house criteria to achieve building energy performance, of methods used to evaluate compliance with such requirements, and of methods used specifically to evaluate the indicator Envelope Air Tightness.

    The results show that different sets of indicators are used to achieve building energy performance in the studied building codes and passive house criteria. The methods used to evaluate compliance with requirements used to achieve building energy performance are also different, but calculation methods are generally more often used than measurement methods. The calculation- and measurement methods used are often simple. A methodology to analyze the deviation between predictions- and measurements of building energy performance (the performance gap) was developed, to investigate the effects of different evaluation methods on different indicators used to achieve building energy performance. The methodology was tested in a case-study. This study indicated that the choice of method affects which parts of the performance gap reflected in the indicators Supplied Energy (see Terminology), Net Energy (see Terminology), and Overall U-value. Among the reviewed methods to evaluate air tightness, the Fan/Blower Door Pressurization is well known and preferred by professionals in the field. The results in this thesis may be useful when choosing indicators and evaluation methods to achieve different objectives of improving building energy performance and in the quest towards comparable and verifiable indicators used to achieve building energy performance.

  • 2.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Hassan, Osama
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Energy evaluation methods for  residential buildings in Nordic countries2012In: Proceeding of the Technoport Conference, Elsevier, 2012Conference paper (Refereed)
    Abstract [en]

    To meet the goals of the directive 2010/31/EU on the energy performance of buildings, the building sector in Europe now faces a transition towards more energy efficient buildings. Research and development of new energy solutions and technology will be necessary for the transition and the importance of measuring and evaluating building energy performance increases. This paper attempts to review and evaluate different methods that are commonly used to analyze energy performance in residential buildings in Nordic countries, primarily in Sweden, Norway and Finland. A short international review of regulations is also included. Some advantages and disadvantages of each method are discussed, as well as commonly used methods in the three countries. Although the three Nordic countries have similar climate conditions and building traditions, the study shows that there exist relatively large variations in defining parameters related to energy performance in residential buildings, such as energy use, heated area, and climate zones. The outcome of the regulations could be investigated by adapting the codes on a selected set of buildings. Common analyzing methods, or parts of methods, are found to be used in several countries. These aspects may be considered in further work to develop more accurate and easily comparable methods to evaluate energy performance for residential buildings in cold climate.

  • 3.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Hassan, Osama
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Methods for air tightness analysis for residential buildings in Nordic countries2012In: Methods for air tightness analysis forresidential buildings in Nordic countries, Southampton: WIT Press, 2012, p. 311-322Conference paper (Refereed)
    Abstract [en]

    Envelope air tightness is one factor that has impact on the energy performance ofbuildings. The goals of the directive 2010/31/EU, on energy performance ofbuildings, raise the importance of building energy performance analysis in theprocess. Measurements of air tightness can be useful both when evaluatingbuilding energy performance and developing new building techniques. The aimof this paper is to review and evaluate methods to measure air tightness in bothnew and existing residential buildings in Sweden, Norway and Finland, based onan international literature study and a survey. The methods are categorized basedon a number of criteria to determine their suitability in different situations.Advantages and disadvantages of the methods are discussed, as well ascommonly used methods in the three countries. The review shows that thestandard ISO 9972 is used for verification in all three countries, but alternativesexist that might be more suitable in certain situations. Simpler methods are usedin the building process to increase air tightness. To achieve a comparablemeasurement, both common methods and commonly defined units are needed.

  • 4.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Hassan, Osama A. B.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Methods for energy analysis of residential buildings in Nordic countries2013In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 22, p. 306-318Article, review/survey (Refereed)
    Abstract [en]

    To meet the goals of the directive 2010/31/EU on the energy performance of buildings, the building sector in Europe now faces a transition towards more energy efficient buildings. Research and development of new energy solutions and technology will be necessary for the transition and the importance of analyzing building energy performance increases. This paper aims to review and evaluate different methods that are commonly used to analyze energy performance in residential buildings in Nordic countries, primarily in Sweden, Norway and Finland. A short international review of regulations is also included. The goal is to find commonly used methods and possibilities for the future. The introduced methods are summarized, categorized and compared based on their advantages and disadvantages. Although the three Nordic countries have similar climate conditions and building traditions, the review shows relatively large variations in the definitions of energy performance for residential buildings, as well as variations in how measurements and calculations are used in the methods for energy performance analysis. In the conducted review, methods, or parts of methods, are also found to be used. The methods used to analyze energy performance are found to be more similar than the concepts of energy performance itself in the three countries. These aspects may be considered in further work to develop an international policy practice for energy performance of residential buildings in cold climate.

  • 5.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nair, Gireesh
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Energy evaluation of residential buildings: Performance gap analysis incorporating uncertainties in the evaluation methods2018In: Building Simulation, ISSN 1996-3599, E-ISSN 1996-8744, Vol. 11, no 4, p. 725-737Article in journal (Refereed)
    Abstract [en]

    Calculation and measurement-based energy performance evaluations of the same building often provide different results. This difference is referred as "the performance gap". However, a large performance gap may not necessarily mean that there are flaws in the building or deviations from the intended design. The causes for the performance gap can be analysed by calibrating the simulation model to measured data. In this paper, an approach is introduced for verifying compliance with energy performance criteria of residential buildings. The approach is based on a performance gap analysis that takes the uncertainties in the energy evaluation methods into consideration. The scope is to verify building energy performance through simulation and analysis of measured data, identifying any performance gap due to deviations from the intended design or flaws in the finished building based on performance gap analysis. In the approach, a simulation model is calibrated to match the heat loss coefficient of the building envelope [kWh/K] instead of the measured energy. The introduced approach is illustrated using a single-family residential building. The heat loss coefficient was found useful towards identifying any deviations from the intended design or flaws in the finished building. The case study indicated that the method uncertainty was important to consider in the performance gap analysis and that the proposed approach is applicable even when the performance gap appears to be non-existing.

  • 6.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nair, Gireesh
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Energy performance indicators in the Swedish building procurement process2017In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 9, no 10, article id 1877Article in journal (Refereed)
    Abstract [en]

    In Sweden, all new buildings need to comply with the National Board of Housing, Building and Planning’s requirement on specific purchased energy (kWh/m2). Accordingly, this indicator is often used to set design criteria in the building procurement process. However, when energy use is measured in finished buildings, the measurements often deviate significantly from the design calculations. The measured specific purchased energy does not necessarily reflect the responsibility of the building contractor, as it is influenced by the building operation, user behavior and climate. Therefore, Swedish building practitioners may prefer other indicators for setting design criteria in the building procurement process. The aim of this study was twofold: (i) to understand the Swedish building practitioners’ perspectives and opinions on seven building energy performance indicators (envelope air leakage, U-values for different building parts, average U-value, specific heat loss, heat loss coefficient, specific net energy, and specific purchased energy); and (ii) to understand the consequences for the energy performance of multi-family buildings of using the studied indicators to set criteria in the procurement process. The study involved a Delphi approach and simulations of a multi-family case study building. The studied indicators were discussed in terms of how they may meet the needs of the building practitioners when used to set building energy performance criteria in the procurement process.

  • 7.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Östin, Ronny
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    A methodology to investigate the building energy performance gap2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118Article in journal (Other academic)
    Abstract [en]

    In order to evaluate compliance with requirements on building energy performance, it is necessary to find strategies to process discrepancies from the results of forward simulations in the design stage and of measurements in the operated stage. The gap between designed performance and measured performance is referred to as the “performance gap”. It can be divided into a procurement gap (between intended design and verified performance) and an operational gap (between verified performance and non-normalized measurements).  

    In this work we introduced a methodology for performance gap analysis, based on separating the procurement- and operational gap. An important component to do this is calibrations of calculations using measured data. The suggested methodology allows for more detailed verifications of building energy performance and can be used to study how indicators reflect the performance gap. The proposed methodology is tested using data from a well-documented and measured operated single family building, in sub-arctic climate in Sweden.

    The indicators studied in the verification were carefully analyzed. The methodology was found reliable based on the obtained results and a sensitivity analysis. An overall observation is that the applicability of the methodology depends on the accuracy of the hybrid method. The accuracy of the performance gap analysis per definition depends on the available information of the operated building, and consequently to access to extensive measured data.

  • 8.
    Nair, Gireesh
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Allard, Ingrid
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Åstrand, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Building professionals' views on energy efficiency compliance requirements2017In: 11th Nordic Symposium on Building Physics, NSB 2017 / [ed] Geving S., Time B., Elsevier, 2017, Vol. 132, p. 988-993Conference paper (Refereed)
    Abstract [en]

    In Sweden, the national building code (BBR) stipulates the specific energy use as an indicator to verify whether a newbuilding is complying with its design-phase energy performance values. However, previous studies have shown that there may belarge differences between the calculated specific energy and the actual monitored energy use. The differences are attributed tovarious reasons including the actual energy behaviour of the occupants as compared to the standard values used in thesimulations. This may lead to disputes between the client and the contractor on the responsibility of meeting the energyrequirements.In this study an adapted version of Delphi methodology was used to understand the building professionals’ view on variousindicators used to verify building energy performance. The study showed that professionals are concerned with the use of specificenergy as an indicator in the building procurement process as they do not have control over the occupants’ energy behaviour.Majority of the professionals expressed a large confidence in the average U-value of the building, component U-values and thespecific heat loss figure by the Swedish center for zero-energy buildings as indicators of building energy performance.

  • 9.
    Olofsson, Thomas
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Allard, Ingrid
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    A quantitative evaluation of airtightness measurement experiences2014In: NSB 2014 10th Nordic Symposium on Building Physics 15-19 June 2014 Lund, Sweden: FULL PAPERS / [ed] Jesper Arfvidsson, Lars-Erik Harderup, Anders Kumlin, Bitte Rosencrantz, 2014Conference paper (Refereed)
    Abstract [en]

    Evaluation of building air tightness based on field measurements is an important aspect in the process to provide good indoor environment and energy efficient buildings. The measurements are generally conducted by experts. To improve field methods for evaluation of building air tightness, experience of these experts can be useful. The scope of this paper is to problematize usefulness of methods for airtightness measurements, how and when methods are used and potential for future development. Surveyed Swedish and Finnish experts have valued the performance and usefulness of methods in the perspective of being used for singe family, multifamily, new, inhabited, under construction, renovation, leaky and air-tight buildings. They also valued the future potential, as well as their own level of experience and expertise, of the methods. Although the results of the survey were based on a small set of collected data, it indicated that the experts favored methods with their highest assessed experience and expertise, i.e. Blower door and Surface temperature measurements/Thermography. Potential of future development within quantitative and component methods was assessed to be positive in general and in particular for the favored methods.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf