Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Aguilar, Ximena
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sparrman, Tobias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Macromolecular crowding extended to a heptameric system: the co-chaperonin protein 102011In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 50, no 14, p. 3034-3044Article in journal (Refereed)
    Abstract [en]

    Experiments on monomeric proteins have shown that macromolecular crowding can stabilize toward heat perturbation and also modulate native-state structure. To assess the effects of macromolecular crowding on unfolding of an oligomeric protein, we here tested the effects of the synthetic crowding agent Ficoll 70 on human cpn10 (GroES in E. coli), a heptameric protein consisting of seven identical β-barrel subunits assembling into a ring. Using far-UV circular dichroism (CD), tyrosine fluorescence, nuclear magnetic resonance (NMR), and cross-linking experiments, we investigated thermal and chemical stability, as well as the heptamer-monomer dissociation constant, without and with crowding agent. We find that crowding shifts the heptamer-monomer equilibrium constant in the direction of the heptamer. The cpn10 heptamer is both thermally and thermodynamically stabilized in 300 mg/mL Ficoll 70 as compared to regular buffer conditions. Kinetic unfolding experiments show that the increased stability in crowded conditions, in part, is explained by slower unfolding rates. A thermodynamic cycle reveals that in presence of 300 mg/mL Ficoll the thermodynamic stability of each cpn10 monomer increases by over 30%, whereas the interfaces are stabilized by less than 10%. We also introduce a new approach to analyze the spectroscopic data that makes use of multiple wavelengths: this provides robust error estimates of thermodynamic parameters.

  • 2.
    Frost, Stefan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Ho, Oanh
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Login, Frédéric H
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Weise, Christoph F
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wolf-Watz, Hans
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Autoproteolysis and Intramolecular Dissociation of Yersinia YscU Precedes Secretion of Its C-Terminal Polypeptide YscU CC2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 11, article id e49349Article in journal (Refereed)
    Abstract [en]

    Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscUCC. Here we show that depletion of calcium induces intramolecular dissociation of YscUCC from YscU followed by secretion of the YscUCC polypeptide. Thus, YscUCC behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscUCC in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscUCC dissociation for Yop secretion. We propose that YscUCC orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms.

  • 3.
    Horvath, Istvan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sellstedt, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Nordvall, Lina-Maria
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Golla, Krishna Prasad
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Larsson, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure2013In: Archives of Biochemistry and Biophysics, ISSN 0003-9861, E-ISSN 1096-0384, Vol. 532, no 2, p. 84-90Article in journal (Refereed)
    Abstract [en]

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation.

  • 4.
    Horvath, Istvan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph F
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Emma K
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sellstedt, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
    Chapman, Matthew
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mechanisms of Protein Oligomerization: Inhibitor of Functional Amyloids Templates α-Synuclein Fibrillation2012In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 7, p. 3439-3444Article in journal (Refereed)
    Abstract [en]

    Small organic molecules that inhibit functional bacterial amyloid fibers, curli, are promising new antibiotics. Here we investigated the mechanism by which the ring-fused 2-pyridone FN075 inhibits fibrillation of the curli protein CsgA. Using a variety of biophysical techniques, we found that FN075 promotes CsgA to form off-pathway, non-amyloidogenic oligomeric species. In light of the generic properties of amyloids, we tested whether FN075 would also affect the fibrillation reaction of human α-synuclein, an amyloid-forming protein involved in Parkinson's disease. Surprisingly, FN075 stimulates α-synuclein amyloid fiber formation as measured by thioflavin T emission, electron microscopy (EM), and atomic force microscopy (AFM). NMR data on (15)N-labeled α-synuclein show that upon FN075 addition, α-synuclein oligomers with 7 nm radius form in which the C-terminal 40 residues remain disordered and solvent exposed. The polypeptides in these oligomers contain β-like secondary structure, and the oligomers are detectable by AFM, EM, and size-exclusion chromatography (SEC). Taken together, FN075 triggers oligomer formation of both proteins: in the case of CsgA, the oligomers do not proceed to fibers, whereas for α-synuclein, the oligomers are poised to rapidly form fibers. We conclude that there is a fine balance between small-molecule inhibition and templation that depends on protein chemistry.

  • 5.
    Malisauskas, Mantas
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Yanamandra, Kiran
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Morozova-Roche, Ludmilla
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties2010In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 396, no 1, p. 60-74Article in journal (Refereed)
    Abstract [en]

    Amyloid formation is a universal behavior of proteins central to many important human pathologies and industrial processes. The extreme stability of amyloids towards chemical and proteolytic degradation is an acquired property compared to the precursor proteins and is a major prerequisite for their accumulation. Here we report a study on the lability of human insulin amyloid as a function of pH and amyloid ageing. Using a range of methods such as AFM, thioflavin-T fluorescence, circular dichroism and gas phase electrophoretic mobility macromolecule analysis we probed the propensity of human insulin amyloid to propagate or dissociate in a wide span of pHs and ageing in a low concentration regime. We generated a three-dimensional amyloid lability landscape in coordinates of pH and amyloid ageing, which displays three distinctive features: (i) a maximum propensity to grow near pH 3.8 and an age corresponding the inflection point of the growth phase; (ii) an abrupt cut-off between growth and disaggregation at pH 8-10; (iii) isoclines shifted towards older age during the amyloid growth phase at pH 4-9, reflecting the greater stability of aged amyloid. Thus, lability of amyloid strongly depends on the ionization state of insulin and on the structure and maturity of amyloid fibrils. The stability of insulin amyloid towards protease K was assessed by using real-time AFM and thioflavin-T fluorescence. We estimated that amyloid fibrils can be digested both from the free ends and within the length of the fibril with a rate of ca. 4 nm/min. Our results highlight that amyloid structures, depending on solution conditions, can be less stable than commonly perceived. These results have wide implications for understanding the propagation of amyloids via a seeding mechanism as well as for understanding their natural clearance and dissociation under solution conditions unfavorable for amyloid formation in biological systems and industrial applications.

  • 6.
    Niemiec, Moritz S
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph F
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    In vitro thermodynamic dissection of human copper transfer from chaperone to target protein2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 5, p. e36102-Article in journal (Refereed)
    Abstract [en]

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  • 7. Palm, Maria E
    et al.
    Weise, Christoph F
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lundin, Christina
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Wingsle, Gunnar
    Nygren, Yvonne
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Björn, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Naredi, Peter
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro2011In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, no 17, p. 6951-6956Article in journal (Refereed)
    Abstract [en]

    Cisplatin (cisPt), Pt(NH(3))(2)Cl(2), is a cancer drug believed to kill cells via DNA binding and damage. Recent work has implied that the cellular copper (Cu) transport machinery may be involved in cisPt cell export and drug resistance. Normally, the Cu chaperone Atox1 binds Cu(I) via two cysteines and delivers the metal to metal-binding domains of ATP7B; the ATP7B domains then transfer the metal to the Golgi lumen for loading on cuproenzymes. Here, we use spectroscopic methods to test if cisPt interacts with purified Atox1 in solution in vitro. We find that cisPt binds to Atox1's metal-binding site regardless of the presence of Cu or not: When Cu is bound to Atox1, the near-UV circular dichroism signals indicate Cu-Pt interactions. From NMR data, it is evident that cisPt binds to the folded protein. CisPt-bound Atox1 is however not stable over time and the protein begins to unfold and aggregate. The reaction rates are limited by slow cisPt dechlorination. CisPt-induced unfolding of Atox1 is specific because this effect was not observed for two unrelated proteins that also bind cisPt. Our study demonstrates that Atox1 is a candidate for cisPt drug resistance: By binding to Atox1 in the cytoplasm, cisPt transport to DNA may be blocked. In agreement with this model, cell line studies demonstrate a correlation between Atox1 expression levels, and cisplatin resistance.

  • 8. Perdersen, Martin Nors
    et al.
    Fodera, Vito
    Horvath, Istvan
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    van Maarschalkerweerd, Andreas
    Toft, Katrine Norgaard
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Vestergaard, Bente
    Direct Correlation Between Ligand-Induced alpha-Synuclein Oligomers and Amyloid-like Fibril Growth2015In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, article id 10422Article in journal (Refereed)
    Abstract [en]

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075: protein ratios, the oligomers appear to be on-pathway and modeling supports an 'oligomer stacking model' for alpha-synuclein fibril elongation.

  • 9.
    Weise, Christoph F
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Login, Frédéric H
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Ho, Oanh
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gröbner, Gerhard
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wolf-Watz, Hans
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein2014In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 107, no 8, p. 1950-1961Article in journal (Refereed)
    Abstract [en]

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  • 10.
    Ådén, Jörgen
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wallgren, Marcus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Storm, Patrik
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Christiansen, Alexander
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Schröder, Wolfgang
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Funk, Christiane
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Arabidopsis thaliana peroxiredoxin Q is extraordinarily dynamic on the μs-ms timescaleManuscript (preprint) (Other academic)
    Abstract [en]

    Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted as the resolving cysteine, generating an intermolecular disulphide bond to expel a second water molecule into solution. PrxQ is finally recycled to the active state by a thioredoxin dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here we have performed a detailed study of the structure and dynamics of PrxQ in both the oxidized and reduced state. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Model-free analyses of NMR spin relaxation show that PrxQ is monomeric in both oxidation states. As evident from fast R2 relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of the conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.

  • 11.
    Ådén, Jörgen
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wallgren, Marcus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Storm, Patrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Christiansen, Alexander
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Schröder, Wolfgang P
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Funk, Christiane
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Extraordinary μs-ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q2011In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1814, no 12, p. 1880-1890Article in journal (Refereed)
    Abstract [en]

    Peroxiredoxin Q (PrxQ) isolated from Arabidopsis thaliana belongs to a family of redox enzymes called peroxiredoxins, which are thioredoxin- or glutaredoxin-dependent peroxidases acting to reduce peroxides and in particular hydrogen peroxide. PrxQ cycles between an active reduced state and an inactive oxidized state during its catalytic cycle. The catalytic mechanism involves a nucleophilic attack of the catalytic cysteine on hydrogen peroxide to generate a sulfonic acid intermediate with a concerted release of a water molecule. This intermediate is subsequently relaxed by the reaction of a second cysteine, denoted the resolving cysteine, generating an intramolecular disulfide bond and release of a second water molecule. PrxQ is recycled to the active state by a thioredoxin-dependent reduction. Previous structural studies of PrxQ homologues have provided the structural basis for the switch between reduced and oxidized conformations. Here, we have performed a detailed study of the activity, structure and dynamics of PrxQ in both the oxidized and reduced states. Reliable and experimentally validated structural models of PrxQ in both oxidation states were generated using homology based modeling. Analysis of NMR spin relaxation rates shows that PrxQ is monomeric in both oxidized and reduced states. As evident from R(2) relaxation rates the reduced form of PrxQ undergoes unprecedented dynamics on the slow μs-ms timescale. The ground state of this conformational dynamics is likely the stably folded reduced state as implied by circular dichroism spectroscopy. We speculate that the extensive dynamics is intimately related to the catalytic function of PrxQ.

  • 12.
    Ådén, Jörgen
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Brännström, Kristoffer
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Structural topology and activation of an initial adenylate kinase-substrate complex2013In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 52, no 6, p. 1055-1061Article in journal (Refereed)
    Abstract [en]

    Enzymatic activity is ultimately defined by the structure, chemistry and dynamics of the Michaelis complex. There exist a large number of experimentally determined structures between enzymes and substrates or substrate analogues or inhibitors. However, transient, short-lived encounter and equilibrium structures also play fundamental roles during enzymatic reaction cycles. Such structures are inherently difficult to study with conventional experimental techniques. The enzyme adenylate kinase undergoes major conformational rearrangements in response to binding of its substrates ATP and AMP. ATP is sandwiched between two binding surfaces in the closed and active enzyme conformation. Thus, ade-nylate kinase harbors two spatially distant surfaces in the substrate free open conformation of which one is responsible for the initial interaction with ATP. Here, we have performed primarily nuclear magnetic resonance experiments on Escherichia coli adenylate kinase (AKeco) variants that enabled identification of the site responsible for the initial ATP interaction. This allowed a characterization of the structural topology of an initial equilibrium complex between AKeco and ATP. Based on the results it is suggested that the ATP binding mechanism to AKeco is a mixture between "induced fit" and "conformational selection" models. It is shown that ATP is activated in the initial enzyme bound complex since it displays an appreciable rate of non-productive ATP hydrolysis. In summary our results provide novel structural and functional insights into adenylate kinase catalysis.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf