Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boija, Ann
    et al.
    Dept. of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
    Holmqvist, Per-Henrik
    Dept. of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå, Sweden.
    Zare, Aman
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå, Sweden.
    Meyers, David J.
    Dept. Pharmacology and Molecular Sciences, The Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
    Cole, Philip A.
    Dept. Pharmacology and Molecular Sciences, The Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Sweden.
    Mannervik, Mattias
    Dept. of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, SwedenDept. Pharmacology and Molecular Sciences, The Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
    Drosophila CBP cooperates with GAGA factor to induce high levels of Pol II promoter-proximal pausingManuscript (preprint) (Other academic)
  • 2.
    Figueiredo, Margarida L. A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Kim, Maria
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå University, SE-90187 Umeå, Sweden.
    Allgardsson, Anders
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Sweden.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå UniversityUmeå, Sweden; Division of CBRN Defence and Security, FOI, Swedish Defence Research Agency, Sweden.
    Larsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Non-coding roX RNAs prevent the binding of the MSL-complex to heterochromatic regions2014In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 10, no 12, p. e1004865-Article in journal (Refereed)
    Abstract [en]

    Long non-coding RNAs contribute to dosage compensation in both mammals and Drosophila by inducing changes in the chromatin structure of the X-chromosome. In Drosophila melanogaster, roX1 and roX2 are long non-coding RNAs that together with proteins form the male-specific lethal (MSL) complex, which coats the entire male X-chromosome and mediates dosage compensation by increasing its transcriptional output. Studies on polytene chromosomes have demonstrated that when both roX1 and roX2 are absent, the MSL-complex becomes less abundant on the male X-chromosome and is relocated to the chromocenter and the 4thchromosome. Here we address the role of roX RNAs in MSL-complex targeting and the evolution of dosage compensation in Drosophila. We performed ChIP-seq experiments which showed that MSL-complex recruitment to high affinity sites (HAS) on the X-chromosome is independent of roX and that the HAS sequence motif is conserved in D. simulans. Additionally, a complete and enzymatically active MSL-complex is recruited to six specific genes on the 4thchromosome. Interestingly, our sequence analysis showed that in the absence of roX RNAs, the MSL-complex has an affinity for regions enriched in Hoppel transposable elements and repeats in general. We hypothesize that roX mutants reveal the ancient targeting of the MSL-complex and propose that the role of roX RNAs is to prevent the binding of the MSL-complex to heterochromatin.

  • 3.
    Figueiredo, Margarida L. A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Larsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    The Male-Specific Lethal complex interacts with non-roX RNAs in Drosophila melanogasterManuscript (preprint) (Other academic)
  • 4.
    Figueiredo, Margarida L A
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Larsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    HP1a Recruitment to Promoters Is Independent of H3K9 Methylation in Drosophila melanogaster2012In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 8, no 11, p. e1003061-Article in journal (Refereed)
    Abstract [en]

    Heterochromatin protein 1 (HP1) proteins, recognized readers of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me), are important regulators of heterochromatin-mediated gene silencing and chromosome structure. In Drosophila melanogaster three histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9: Su(var)3-9, Setdb1, and G9a. To probe the dependence of HP1a binding on H3K9me, its dependence on these three HKMTs, and the division of labor between the HKMTs, we have examined correlations between HP1a binding and H3K9me patterns in wild type and null mutants of these HKMTs. We show here that Su(var)3-9 controls H3K9me-dependent binding of HP1a in pericentromeric regions, while Setdb1 controls it in cytological region 2L:31 and (together with POF) in chromosome 4. HP1a binds to the promoters and within bodies of active genes in these three regions. More importantly, however, HP1a binding at promoters of active genes is independent of H3K9me and POF. Rather, it is associated with heterochromatin protein 2 (HP2) and open chromatin. Our results support a hypothesis in which HP1a nucleates with high affinity independently of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.

  • 5.
    Holmqvist, Per-Henrik
    et al.
    The Wenner-Gren Institute, Developmental Biology, Stockholm University, Stockholm.
    Boija, Ann
    The Wenner-Gren Institute, Developmental Biology, Stockholm University, Stockholm.
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Crona, Filip
    The Wenner-Gren Institute, Developmental Biology, Stockholm University, Stockholm.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Mannervik, Mattias
    The Wenner-Gren Institute, Developmental Biology, Stockholm University, Stockholm.
    Preferential Genome Targeting of the CBP Co-Activator by Rel and Smad Proteins in Early Drosophila melanogaster Embryos2012In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 8, no 6, p. e1002769-Article in journal (Refereed)
    Abstract [en]

    CBP and the related p300 protein are widely used transcriptional co-activators in metazoans that interact with multiple transcription factors. Whether CBP/p300 occupies the genome equally with all factors or preferentially binds together with some factors is not known. We therefore compared Drosophila melanogaster CBP (nejire) ChIP-seq peaks with regions bound by 40 different transcription factors in early embryos, and we found high co-occupancy with the Rel-family protein Dorsal. Dorsal is required for CBP occupancy in the embryo, but only at regions where few other factors are present. CBP peaks in mutant embryos lacking nuclear Dorsal are best correlated with TGF-ß/Dpp-signaling and Smad-protein binding. Differences in CBP occupancy in mutant embryos reflect gene expression changes genome-wide, but CBP also occupies some non-expressed genes. The presence of CBP at silent genes does not result in histone acetylation. We find that Polycomb-repressed H3K27me3 chromatin does not preclude CBP binding, but restricts histone acetylation at CBP-bound genomic sites. We conclude that CBP occupancy in Drosophila embryos preferentially overlaps factors controlling dorso-ventral patterning and that CBP binds silent genes without causing histone hyperacetylation.

  • 6.
    Landfors, Mattias
    et al.
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics. Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Rydén, Patrik
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Normalization of high dimensional genomics data where the distribution of the altered variables is skewed2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 11, p. e27942-Article in journal (Refereed)
    Abstract [en]

    Genome-wide analysis of gene expression or protein binding patterns using different array or sequencing based technologies is now routinely performed to compare different populations, such as treatment and reference groups. It is often necessary to normalize the data obtained to remove technical variation introduced in the course of conducting experimental work, but standard normalization techniques are not capable of eliminating technical bias in cases where the distribution of the truly altered variables is skewed, i.e. when a large fraction of the variables are either positively or negatively affected by the treatment. However, several experiments are likely to generate such skewed distributions, including ChIP-chip experiments for the study of chromatin, gene expression experiments for the study of apoptosis, and SNP-studies of copy number variation in normal and tumour tissues. A preliminary study using spike-in array data established that the capacity of an experiment to identify altered variables and generate unbiased estimates of the fold change decreases as the fraction of altered variables and the skewness increases. We propose the following work-flow for analyzing high-dimensional experiments with regions of altered variables: (1) Pre-process raw data using one of the standard normalization techniques. (2) Investigate if the distribution of the altered variables is skewed. (3) If the distribution is not believed to be skewed, no additional normalization is needed. Otherwise, re-normalize the data using a novel HMM-assisted normalization procedure. (4) Perform downstream analysis. Here, ChIP-chip data and simulated data were used to evaluate the performance of the work-flow. It was found that skewed distributions can be detected by using the novel DSE-test (Detection of Skewed Experiments). Furthermore, applying the HMM-assisted normalization to experiments where the distribution of the truly altered variables is skewed results in considerably higher sensitivity and lower bias than can be attained using standard and invariant normalization methods.

  • 7.
    Philip, Philge
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Mining DNA elements involved in targeting of chromatin modifiers2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Background: In all higher organisms, the nuclear DNA is condensed into nucleosomes that consist of DNA wrapped around a core of highly conserved histone proteins. DNA bound to histones and other structural proteins form the chromatin. Generally, only few regions of DNA are accessible and most of the time RNA polymerase and other DNA binding proteins have to overcome this compaction to initiate transcription. Several proteins are involved in making the chromatin more compact or open. Such chromatin-modifying proteins make distinct post-translational modifications of histones – especially in the histone tails – to alter their affinity to DNA. Aim: The main aim of my thesis work is to study the targeting of chromatin modifiers important for correct gene expression in Drosophila melanogaster (fruit flies). Primary DNA sequences, chromatin associated proteins, transcription, and non-coding RNAs are all likely to be involved in targeting mechanisms. This thesis work involves the development of new computational methods for identification of DNA motifs and protein factors involved in the targeting of chromatin modifiers. Targeting and functional analysis of two chromatin modifiers, namely male-specific lethal (MSL) complex and CREB-binding protein (CBP) are specifically studied. The MSL complex is a protein complex that mediates dosage compensation in flies. CBP protein is known as a transcriptional co-regulator in metazoans and it has histone acetyl transferase activity and CBP has been used to predict novel enhancers. Results: My studies of the binding sites of MSL complex shows that promoters and coding sequences of MSL-bound genes on the X-chromosome of Drosophila melanogaster can influence the spreading of the complex along the X-chromosome. Analysis of MSL binding sites when two non-coding roX RNAs are mutated shows that MSL-complex recruitment to high-affinity sites on the Xchromosome is independent of roX, and the role of roX RNAs is to prevent binding to repeats in autosomal sites. Functional analysis of MSL-bound genes using their dosage compensation status shows that the function of the MSL complex is to enhance the expression of short housekeeping genes, but MSL-independent mechanisms exist to achieve complete dosage compensation. Studies of the binding sites of the CBP protein show that, in early embryos, Dorsal in cooperation with GAGA factor (GAF) and factors like Medea and Dichaete target CBP to its binding sites. In the S2 cell line, GAF is identified as the targeting factor of CBP at promoters and enhancers, and GAF and CBP together are found to induce high levels of polymerase II pausing at promoters. In another study using integrated data analysis, CBP binding sites could be classified into polycomb protein binding sites, repressed enhancers, insulator protein-bound regions, active promoters, and active enhancers, and this suggested different potential roles for CBP. A new approach was also developed to eliminate technical bias in skewed experiments. Our study shows that in the case of skewed datasets it is always better to identify non-altered variables and to normalize the data using only such variables.

  • 8.
    Philip, Philge
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå University, Sweden.
    Boija, Ann
    Dept. of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
    Mannervik, Mattias
    Dept. of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Computational Life Science Cluster (CLiC), Umeå University, Sweden.
    CBP functions outside of promoters and enhancers in Drosophila melanogasterManuscript (preprint) (Other academic)
  • 9.
    Philip, Philge
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Centre for Cellular and Molecular Biology, Uppal Road, Telangana, India .
    Boija, Ann
    Vaid, Roshan
    Churcher, Allison M
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Meyers, David J
    Cole, Philip A
    Mannervik, Mattias
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Division of CBRN Security and Defence, FOI–Swedish Defence Research Agency, Umeå, Sweden.
    CBP binding outside of promoters and enhancers in Drosophila melanogaster2015In: Epigenetics & Chromatin, ISSN 1756-8935, E-ISSN 1756-8935, Vol. 8, article id 48Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 (H3K4me1).

    RESULTS: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent repressive H3K27 methylation from spreading into adjacent chromatin.

    CONCLUSIONS: We conclude that CBP could be involved in a much wider range of functions than has previously been appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a common role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions and speculate that CBP is controlling higher order chromatin organization.

  • 10.
    Philip, Philge
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Pettersson, Fredrik
    Umbio, 907 19 Umeå, Sweden.
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster2012In: BMC Genomics, ISSN 1471-2164, E-ISSN 1471-2164, Vol. 13, p. 97-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s) and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL) complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood.

    RESULTS: We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs) and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence.

    CONCLUSIONS: Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  • 11.
    Philip, Philge
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Stenberg, Per
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Male X-linked genes in Drosophila melanogaster are compensated independently of the Male-Specific Lethal complex2013In: Epigenetics & Chromatin, ISSN 1756-8935, E-ISSN 1756-8935, Vol. 6, no Article number: 35Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: In organisms where the two sexes have unequal numbers of X-chromosomes, the expression of X-linked genes needs to be balanced not only between the two sexes, but also between X and the autosomes. In Drosophila melanogaster, the Male-Specific Lethal (MSL) complex is believed to produce a 2-fold increase in expression of genes on the male X, thus restoring this balance.

    RESULTS: Here we show that almost all the genes on the male X are effectively compensated. However, many genes are compensated without any significant recruitment of the MSL-complex. These genes are very weakly, if at all, affected by mutations or RNAi against MSL-complex components. In addition, even the genes that are strongly bound by MSL rely on mechanisms other than the MSL-complex for proper compensation. We find that long, non-ubiquitously expressed genes tend to rely less on the MSL-complex for their compensation and genes that in addition are far from High Affinity Sites tend to not bind the complex at all or very weakly.

    CONCLUSIONS: We conclude that most of the compensation of X-linked genes is produced by an MSL-independent mechanism. Similar to the case of the MSL-mediated compensation we do not yet know the mechanism behind the MSL-independent compensation that appears to act preferentially on long genes. Even if we observe similarities, it remains to be seen if the mechanism is related to the buffering that is observed in autosomal aneuploidies.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf