Change search
Refine search result
12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Abdoullaye, Doukary
    et al.
    Acevedo, I
    Adebayo, Abisola A
    Behrmann-Godel, Jasminca
    Benjamin, RC
    Bock, Dan G
    Born, Celine
    Brouat, Carine
    Caccone, Adalgisa
    Cao, Ling-Zhen
    Casadoamezua, P
    Cataneo, J
    Correa-Ramirez, MM
    Cristescu, Melania E
    Dobigny, Gauthier
    Egbosimba, Emmanuel E
    Etchberger, Lianna K
    Fan, Bin
    Fields, Peter D
    Forcioli, D
    Furla, P
    de Leon, FJ Garcia
    Garcia-Jimenez, R
    Gauthier, Philippe
    Gergs, Rene
    Gonzalez, Clementina
    Granjon, Laurent
    Gutierrez-Rodriguez, Carla
    Havill, Nathan P
    Helsen, P
    Hether, Tyler D
    Hoffman, Eric A
    Hu, Xiangyang
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ishizaki, S
    Ji, Heyi
    Ji, XS
    Jimenez, ML
    Kapil, R
    Karban, R
    Keller, Stephen R
    Kubota, S
    Li, Shuzhen
    Li, Wansha
    Lim, Douglas D
    Lin, Haoran
    Liu, Xiaochun
    Luo, Yayan
    Machordom, A
    Martin, Andrew P
    Matthysen, E
    Mazzella, Maxwell N
    McGeoch, Melodie A
    Meng, Zining
    Nishizawa, M
    O'Brien, Patricia
    Ohara, M
    Ornelas, Juan Francisco
    Ortu, MF
    Pedersen, Amy B
    Preston, L
    Ren, Qin
    Rothhaupt, Karl-Otto
    Sackett, Loren C
    Sang, Qing
    Sawyer, GM
    Shiojiri, K
    Taylor, Douglas R
    van Dongen, S
    van Vuuren, Bettine Jansen
    Vandewoestijne, S
    Wang, H
    Wang, JT
    Wang, Le
    Xu, Xiang-Li
    Yang, Guang
    Yang, Yongping
    Zeng, YQ
    Zhang, Qing-Wen
    Zhang, Yongping
    Zhao, Y
    Zhou, Yan
    Permanent genetic resources added to molecular ecology resources database 1 August 2009 - 30 September 20092010In: Molecular Ecology Resources, ISSN 1755-098X, E-ISSN 1755-0998, Vol. 10, no 1, p. 232-236Article in journal (Refereed)
    Abstract [en]

    This article documents the addition of 238 microsatellite marker loci and 72 pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Adelges tsugae, Artemisia tridentata, Astroides calycularis, Azorella selago, Botryllus schlosseri, Botrylloides violaceus, Cardiocrinum cordatum var. glehnii, Campylopterus curvipennis, Colocasia esculenta, Cynomys ludovicianus, Cynomys leucurus, Cynomys gunnisoni, Epinephelus coioides, Eunicella singularis, Gammarus pulex, Homoeosoma nebulella, Hyla squirella, Lateolabrax japonicus, Mastomys erythroleucus, Pararge aegeria, Pardosa sierra, Phoenicopterus ruber ruber and Silene latifolia. These loci were cross-tested on the following species: Adelges abietis, Adelges cooleyi, Adelges piceae, Pineus pini, Pineus strobi, Tubastrea micrantha, three other Tubastrea species, Botrylloides fuscus, Botrylloides simodensis, Campylopterus hemileucurus, Campylopterus rufus, Campylopterus largipennis, Campylopterus villaviscensio, Phaethornis longuemareus, Florisuga mellivora, Lampornis amethystinus, Amazilia cyanocephala, Archilochus colubris, Epinephelus lanceolatus, Epinephelus fuscoguttatus, Symbiodinium temperate-A clade, Gammarus fossarum, Gammarus roeselii, Dikerogammarus villosus and Limnomysis benedeni. This article also documents the addition of 72 sequencing primer pairs and 52 allele specific primers for Neophocaena phocaenoides.

  • 2. Baison, John
    et al.
    Vidalis, Amaryllis
    Zhou, Linghua
    Chen, Zhi-Qiang
    Li, Zitong
    Sillanpaeae, Mikko J.
    Bernhardsson, Carolina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Scofield, Douglas
    Forsberg, Nils
    Grahn, Thomas
    Olsson, Lars
    Karlsson, Bo
    Wu, Harry
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lundqvist, Sven-Olof
    Niittylae, Totte
    Garcia-Gil, M. Rosario
    Genome-wide association study identified novel candidate loci affecting wood formation in Norway spruce2019In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313XArticle in journal (Refereed)
    Abstract [en]

    Norway spruce is a boreal forest tree species of significant ecological and economic importance. Hence there is a strong imperative to dissect the genetics underlying important wood quality traits in the species. We performed a functional genome-wide association study (GWAS) of 17 wood traits in Norway spruce using 178 101 single nucleotide polymorphisms (SNPs) generated from exome genotyping of 517 mother trees. The wood traits were defined using functional modelling of wood properties across annual growth rings. We applied a Least Absolute Shrinkage and Selection Operator (LASSO-based) association mapping method using a functional multilocus mapping approach that utilizes latent traits, with a stability selection probability method as the hypothesis testing approach to determine a significant quantitative trait locus. The analysis provided 52 significant SNPs from 39 candidate genes, including genes previously implicated in wood formation and tree growth in spruce and other species. Our study represents a multilocus GWAS for complex wood traits in Norway spruce. The results advance our understanding of the genetics influencing wood traits and identifies candidate genes for future functional studies.

  • 3. Barker, Hilary L.
    et al.
    Riehl, Jennifer F.
    Bernhardsson, Carolina
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Rubert-Nason, Kennedy F.
    Holeski, Liza M.
    Ingvarsson, Pär K.
    Lindroth, Richard L.
    Linking plant genes to insect communities: Identifying the genetic bases of plant traits and community composition2019In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294XArticle in journal (Refereed)
    Abstract [en]

    Community genetics aims to understand the effects of intraspecific genetic variation on community composition and diversity, thereby connecting community ecology with evolutionary biology. Thus far, research has shown that plant genetics can underlie variation in the composition of associated communities (e.g., insects, lichen and endophytes), and those communities can therefore be considered as extended phenotypes. This work, however, has been conducted primarily at the plant genotype level and has not identified the key underlying genes. To address this gap, we used genome‐wide association mapping with a population of 445 aspen (Populus tremuloides) genets to identify the genes governing variation in plant traits (defence chemistry, bud phenology, leaf morphology, growth) and insect community composition. We found 49 significant SNP associations in 13 Populus genes that are correlated with chemical defence compounds and insect community traits. Most notably, we identified an early nodulin‐like protein that was associated with insect community diversity and the abundance of interacting foundation species (ants and aphids). These findings support the concept that particular plant traits are the mechanistic link between plant genes and the composition of associated insect communities. In putting the “genes” into “genes to ecosystems ecology”, this work enhances understanding of the molecular genetic mechanisms that underlie plant–insect associations and the consequences thereof for the structure of ecological communities.

  • 4.
    Berglund, Åsa
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Danielsson, H
    IVL Swedish Environmental Research Institute Ltd., P.O. Box 5302, SE-400 14 Gothenburg, Sweden.
    Nyholm, Erik
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden.2010In: Environmental Pollution, ISSN 0269-7491, E-ISSN 1873-6424, Vol. 158, no 5, p. 1368-75Article in journal (Refereed)
    Abstract [en]

    Mining activities affect the surrounding environment by increasing exposure to metals. In this study, metal accumulation and its effects on reproduction and health of pied flycatcher (Ficedula hypoleuca) nestlings were monitored before and up to five years after a lead mine and enrichment plant closed down. The lead concentration in moss, nestling blood, liver and feces all indicated decreased lead exposure by at least 31% after closure, although only blood lead decreased significantly. Although the birds responded fairly well to the changed atmospheric deposition (based on moss samples), concentrations were still higher compared with birds in a reference area, and breeding was affected at the mine (smaller clutches and higher mortality). Surviving nestlings suffered from lower hemoglobin levels, mean cell hemoglobin concentrations and inhibited delta-aminolevulinic acid dehydratase activity. Lead poisoning contributed to poor health and adverse reproductive effects, but other factors (e.g. increased parasitic load) probably also affected the birds.

  • 5.
    Bernhardsson, Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Geographic structure and adaptive population differentiation in herbivore defence genes in European aspen (Populus tremula L., Salicaceae)2012In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 21, no 9, p. 2197-2207Article in journal (Refereed)
    Abstract [en]

    When a phenotypic trait is subjected to spatially variable selection and local adaptation, the underlying genes controlling the trait are also expected to show strong patterns of genetic differentiation since alternative alleles are favored in different geographical locations. Here we study 71 SNPs from seven genes associated with inducible defense responses in a sample of P. tremula collected from across Sweden. Four of these genes (PPO2, TI2, TI4 and TI5) show substantial population differentiation and a PCA conducted on the defense SNPs divides the Swedish population into three distinct clusters. Several defense SNPs show latitudinal clines, although these were not robust to multiple testing. However, five SNPs (located within TI4 and TI5) show strong longitudinal clines that remain significant after multiple test correction. Genetic geographical variation, supporting local adaptation, has earlier been confirmed in genes involved in the photoperiod pathway in P. tremula, but this is, to our knowledge, one of the first times that geographic variation has been found in genes involved in plant defense against antagonists.

  • 6.
    Bernhardsson, Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Molecular population genetics of elicitor-induced resistance genes in European aspen (Populus tremula L., Salicaceae)2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 9, p. e24867-Article in journal (Refereed)
    Abstract [en]

    Owing to their long life span and ecological dominance in many communities, forest trees are subject to attack from a diverse array of herbivores throughout their range, and have therefore developed a large number of both constitutive and inducible defenses. We used molecular population genetics methods to examine the evolution of eight genes in European aspen, Populus tremula, that are all associated with defensive responses against pests and/or pathogens, and have earlier been shown to become strongly up-regulated in poplars as a response to wounding and insect herbivory. Our results show that the majority of these defense genes show patterns of intraspecific polymorphism and site-frequency spectra that are consistent with a neutral model of evolution. However, two of the genes, both belonging to a small gene family of polyphenol oxidases, show multiple deviations from the neutral model. The gene PPO1 has a 600 bp region with a highly elevated K(A)/K(S) ratio and reduced synonymous diversity. PPO1 also shows a skew toward intermediate frequency variants in the SFS, and a pronounced fixation of non-synonymous mutations, all pointing to the fact that PPO1 has been subjected to recurrent selective sweeps. The gene PPO2 shows a marked excess of high frequency, derived variants and shows many of the same trends as PPO1 does, even though the pattern is less pronounced, suggesting that PPO2 might have been the target of a recent selective sweep. Our results supports data from both Populus and other species which have found that the the majority of defense-associated genes show few signs of selection but that a number of genes involved in mediating defense against herbivores show signs of adaptive evolution.

  • 7.
    Bernhardsson, Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Robinson, Kathryn M.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Abreu, Ilka N.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Albrectsen, Benedicte R.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Univ Copenhagen, Sect Plant Biochem, Dept Plant & Environm Sci, DK-1871 Frederiksberg, Denmark.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Geographic structure in metabolome and herbivore community co-occurs with genetic structure in plant defence genes2013In: Ecology Letters, ISSN 1461-023X, E-ISSN 1461-0248, Vol. 16, no 6, p. 791-798Article in journal (Refereed)
    Abstract [en]

    Plantherbivore interactions vary across the landscape and have been hypothesised to promote local adaption in plants to the prevailing herbivore regime. Herbivores that feed on European aspen (Populus tremula) change across regional scales and selection on host defence genes may thus change at comparable scales. We have previously observed strong population differentiation in a set of inducible defence genes in Swedish P. tremula. Here, we study the geographic patterns of abundance and diversity of herbivorous insects, the untargeted metabolome of the foliage and genetic variation in a set of wound-induced genes and show that the geographic structure co-occurs in all three data sets. In response to this structure, we observe local maladaptation of herbivores, with fewer herbivores on local trees than on trees originated from more distant localities. Finally, we also identify 28 significant associations between single nucleotide polymorphisms SNPs from defence genes and a number of the herbivore traits and metabolic profiles.

  • 8.
    Bernhardsson, Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Robinson, Kathryn M.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Abreu, Ilka N.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Albrectsen, Benedicte R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Population differentiation in arthropod community structure and phenotypic association with inducible defense genes in European Aspen (Populus tremula L., salicaceae)Manuscript (preprint) (Other academic)
    Abstract [en]

    Plant-herbivore interactions are known to vary across a landscape due to both variation in abiotic and biotic factors. Such spatial variation tends to promoting local adaption of plants to the prevailing herbivore regime. Here we use data from a common garden to look for patterns across populations in the abundance and diversity of herbivorous insects. We also screen for variation in the untargeted metabolome of the foliage of a subset of the same trees. We also search for phenotypic associations between genetic variation in a number of wound-induced genes and phenotypic variation in herbivore abundance, diversity and in metabolomes. We observe significant genetic variation in a number of herbivore-related traits but low correlations between traits. We do observe substantial genetic structure in both herbivore community structure and in metabolic profiles and this structure is aligned with genetic structure we have previously documented for a set of defense genes. We also identify a number of significant associations between SNPs from wound-induced defense genes and a number of the herbivore traits and metabolic profiles. However, these associations are likely not causal, but are rather caused by the underlying population structure we observe. These results highlight to the importance of historical processes and the need to better understand both the current-day geographic distribution of different herbivore species as well as the post-glacial colonization history of both plants and herbivores.

  • 9.
    Bernhardsson, Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Science, Umeå, Sweden; Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden.
    Vidalis, Amaryllis
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München.
    Wang, Xi
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden.
    Scofield, Douglas
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Uppsala Multidisciplinary Center for Advanced Computational Science; Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden.
    Schiffthaler, Bastian
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Baison, John
    Street, Nathaniel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Garcia-Gil, M. Rosario
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Science, Uppsala, Sweden.
    An Ultra-Dense Haploid Genetic Map for Evaluating the Highly Fragmented Genome Assembly of Norway Spruce (Picea abies)2019In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 9, no 5, p. 1623-1632Article in journal (Refereed)
    Abstract [en]

    Norway spruce (Picea abies (L.) Karst.) is a conifer species of substanital economic and ecological importance. In common with most conifers, the P. abies genome is very large (similar to 20 Gbp) and contains a high fraction of repetitive DNA. The current P. abies genome assembly (v1.0) covers approximately 60% of the total genome size but is highly fragmented, consisting of >10 million scaffolds. The genome annotation contains 66,632 gene models that are at least partially validated (), however, the fragmented nature of the assembly means that there is currently little information available on how these genes are physically distributed over the 12 P. abies chromosomes. By creating an ultra-dense genetic linkage map, we anchored and ordered scaffolds into linkage groups, which complements the fine-scale information available in assembly contigs. Our ultra-dense haploid consensus genetic map consists of 21,056 markers derived from 14,336 scaffolds that contain 17,079 gene models (25.6% of the validated gene models) that we have anchored to the 12 linkage groups. We used data from three independent component maps, as well as comparisons with previously published Picea maps to evaluate the accuracy and marker ordering of the linkage groups. We demonstrate that approximately 3.8% of the anchored scaffolds and 1.6% of the gene models covered by the consensus map have likely assembly errors as they contain genetic markers that map to different regions within or between linkage groups. We further evaluate the utility of the genetic map for the conifer research community by using an independent data set of unrelated individuals to assess genome-wide variation in genetic diversity using the genomic regions anchored to linkage groups. The results show that our map is sufficiently dense to enable detailed evolutionary analyses across the P. abies genome.

  • 10.
    Bernhardsson, Carolina
    et al.
    Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden;Swedish Univ Agr Sci, Umea Plant Sci Ctr, Dept Forest Genet & Plant Physiol, Umea, Sweden;Swedish Univ Agr Sci, Dept Plant Biol, Uppsala BioCtr, Uppsala, Sweden.
    Vidalis, Amaryllis
    Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden;Tech Univ Munich, Dept Populat Genet, Ctr Life & Food Sci Weihenstephan, D-85354 Freising Weihenstephan, Germany.
    Wang, Xi
    Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden;Swedish Univ Agr Sci, Dept Plant Biol, Uppsala BioCtr, Uppsala, Sweden.
    Scofield, Douglas
    Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden.
    Schiffthaler, Bastian
    Umea Univ, Umea Plant Sci Ctr, Dept Plant Physiol, Umea, Sweden.
    Baison, John
    Swedish Univ Agr Sci, Umea Plant Sci Ctr, Dept Forest Genet & Plant Physiol, Umea, Sweden.
    Street, Nathaniel R.
    Umea Univ, Umea Plant Sci Ctr, Dept Plant Physiol, Umea, Sweden.
    Garcia-Gil, M. Rosario
    Swedish Univ Agr Sci, Umea Plant Sci Ctr, Dept Forest Genet & Plant Physiol, Umea, Sweden.
    Ingvarsson, Pär K.
    Umea Univ, Dept Ecol & Environm Sci, Umea, Sweden;Swedish Univ Agr Sci, Dept Plant Biol, Uppsala BioCtr, Uppsala, Sweden.
    An Ultra-Dense Haploid Genetic Map for Evaluating the Highly Fragmented Genome Assembly of Norway Spruce (Picea abies)2019In: G3: Genes, Genomes, Genetics, ISSN 2160-1836, E-ISSN 2160-1836, Vol. 9, no 5, p. 1623-1632Article in journal (Refereed)
    Abstract [en]

    Norway spruce (Picea abies (L.) Karst.) is a conifer species of substanital economic and ecological importance. In common with most conifers, the P. abies genome is very large (similar to 20 Gbp) and contains a high fraction of repetitive DNA. The current P. abies genome assembly (v1.0) covers approximately 60% of the total genome size but is highly fragmented, consisting of >10 million scaffolds. The genome annotation contains 66,632 gene models that are at least partially validated (), however, the fragmented nature of the assembly means that there is currently little information available on how these genes are physically distributed over the 12 P. abies chromosomes. By creating an ultra-dense genetic linkage map, we anchored and ordered scaffolds into linkage groups, which complements the fine-scale information available in assembly contigs. Our ultra-dense haploid consensus genetic map consists of 21,056 markers derived from 14,336 scaffolds that contain 17,079 gene models (25.6% of the validated gene models) that we have anchored to the 12 linkage groups. We used data from three independent component maps, as well as comparisons with previously published Picea maps to evaluate the accuracy and marker ordering of the linkage groups. We demonstrate that approximately 3.8% of the anchored scaffolds and 1.6% of the gene models covered by the consensus map have likely assembly errors as they contain genetic markers that map to different regions within or between linkage groups. We further evaluate the utility of the genetic map for the conifer research community by using an independent data set of unrelated individuals to assess genome-wide variation in genetic diversity using the genomic regions anchored to linkage groups. The results show that our map is sufficiently dense to enable detailed evolutionary analyses across the P. abies genome.

  • 11.
    Bos, Antoine
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Natural variation in freezing tolerance and genetic correlations with flowering time in Arabidopsis thalianaManuscript (Other academic)
  • 12.
    Bos, Antoine
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Nucleotide polymorphism in ICE1: a regulator of cold induced freezing tolerance in Arabidopsis thalianaManuscript (Other academic)
  • 13.
    Bos, Antoine
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Nucleotide polymorphism in the CBF transcription factor gene sequenceManuscript (Other academic)
  • 14. Cole, Christopher T.
    et al.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Pathway position constrains the evolution of an ecologically important pathway in aspens (Populus tremula L.)2018In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 27, no 16, p. 3317-3330Article in journal (Refereed)
    Abstract [en]

    Many ecological interactions of aspens and their relatives (Populus spp.) are affected by products of the phenylpropanoid pathway synthesizing condensed tannins (CTs), whose production involves trade-offs with other ecologically important compounds and with growth. Genes of this pathway are candidates for investigating the role of selection on ecologically important, polygenic traits. We analysed sequences from 25 genes representing 10 steps of the CT synthesis pathway, which produces CTs used in defence and lignins used for growth, in 12 individuals of European aspen (Populus tremula). We compared these to homologs from P.trichocarpa, to a control set of 77 P. tremula genes, to genome-wide resequencing data and to RNA-seq expression levels, in order to identify signatures of selection distinct from those of demography. In Populus, pathway position exerts a strong influence on the evolution of these genes. Nonsynonymous diversity, divergence and allele frequency shifts (Tajima's D) were much lower than for synonymous measures. Expression levels were higher, and the direction of selection more negative, for upstream genes than for those downstream. Selective constraints act with increasing intensity on upstream genes, despite the presence of multiple paralogs in most gene families. Pleiotropy, expression level, flux control and codon bias appear to interact in determining levels and patterns of variation in genes of this pathway, whose products mediate a wide array of ecological interactions for this widely distributed species.

  • 15. de Carvalho, Dulcineia
    et al.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Joseph, Jeffrey
    Suter, Leonie
    Sedivy, Claudio
    Macaya-Sanz, David
    Cottrell, Joan
    Heinze, Berthold
    Schanzer, Ivan
    Lexer, Christian
    Admixture facilitates adaptation from standing variation in the European aspen (P. tremula L.), a widespread forest tree2010In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 19, no 8, p. 1638-1650Article in journal (Refereed)
    Abstract [en]

    Adaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L., a widespread forest tree, using mapped molecular genetic markers. We detected the genetic signature of postglacial admixture between a Western and an Eastern lineage of P. tremula in Scandinavia, an area suspected to represent a zone of postglacial contact for many species of animals and plants. Stringent divergence-based neutrality tests provided clear indications for locally varying selection at the European scale. Six of 12 polymorphisms under selection were located less than 1 kb away from the nearest gene predicted by the Populus trichocarpa genome sequence. Few of these loci exhibited a signature of 'selective sweeps' in diversity-based tests, which is to be expected if adaptation occurs primarily from standing variation. In Scandinavia, admixture explained genomic patterns of ancestry and the nature of clinal variation and strength of selection for bud set, a phenological trait of great adaptive significance in temperate trees, measured in a common garden trial. Our data provide a hitherto missing direct link between past range shifts because of climatic oscillations, and levels of standing variation currently available for selection and adaptation in a terrestrial foundation species.

  • 16.
    De La Torre, Amanda
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Vancouver, BC, Canada.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Aitken, S. N.
    Vancouver, BC, Canada.
    Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea2015In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 115, no 2, p. 153-164Article in journal (Refereed)
    Abstract [en]

    Hybrid zones provide an opportunity to study the effects of selection and gene flow in natural settings. We employed nuclear microsatellites (single sequence repeat (SSR)) and candidate gene single-nucleotide polymorphism markers (SNPs) to characterize the genetic architecture and patterns of interspecific gene flow in the Picea glauca x P. engelmannii hybrid zone across a broad latitudinal (40-60 degrees) and elevational (350-3500 m) range in western North America. Our results revealed a wide and complex hybrid zone with broad ancestry levels and low interspecific heterozygosity, shaped by asymmetric advanced-generation introgression, and low reproductive barriers between parental species. The clinal variation based on geographic variables, lack of concordance in clines among loci and the width of the hybrid zone points towards the maintenance of species integrity through environmental selection. Congruency between geographic and genomic clines suggests that loci with narrow clines are under strong selection, favoring either one parental species (directional selection) or their hybrids (overdominance) as a result of strong associations with climatic variables such as precipitation as snow and mean annual temperature. Cline movement due to past demographic events (evidenced by allelic richness and heterozygosity shifts from the average cline center) may explain the asymmetry in introgression and predominance of P. engelmannii found in this study. These results provide insights into the genetic architecture and fine-scale patterns of admixture, and identify loci that may be involved in reproductive barriers between the species.

  • 17.
    de La Torre, Amanda R
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Birol, Inanc
    Bousquet, Jean
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jones, Steven J. M
    Keeling, Christopher I
    MacKay, John
    Nilsson, Ove
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Ritland, Kermit
    Street, Nathaniel
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Yanchuk, Alvin
    Zerbe, Philipp
    Bohlmann, Jörg
    Insights into conifer giga-genomes2014In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 166, no 4, p. 1724-1732Article in journal (Refereed)
    Abstract [en]

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes.

  • 18.
    de La Torre, Amanda R.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Sciences, University of California–Davis, Davis, CA.
    Li, Zhen
    Van de Peer, Yves
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Biology, Uppsala Biocenter, Swedish University of Agr icultural Sciences, Uppsala, Sweden.
    Contrasting Rates of Molecular Evolution and Patterns of Selection among Gymnosperms and Flowering Plants2017In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 34, no 6, p. 1363-1377Article in journal (Refereed)
    Abstract [en]

    The majority of variation in rates of molecular evolution among seed plants remains both unexplored and unexplained. Although some attention has been given to flowering plants, reports of molecular evolutionary rates for their sister plant clade (gymnosperms) are scarce, and to our knowledge differences in molecular evolution among seed plant clades have never been tested in a phylogenetic framework. Angiosperms and gymnosperms differ in a number of features, of which contrasting reproductive biology, life spans, and population sizes are the most prominent. The highly conserved morphology of gymnosperms evidenced by similarity of extant species to fossil records and the high levels of macrosynteny at the genomic level have led scientists to believe that gymnosperms are slow-evolving plants, although some studies have offered contradictory results. Here, we used 31,968 nucleotide sites obtained from orthologous genes across a wide taxonomic sampling that includes representatives of most conifers, cycads, ginkgo, and many angiosperms with a sequenced genome. Our results suggest that angiosperms and gymnosperms differ considerably in their rates of molecular evolution per unit time, with gymnosperm rates being, on average, seven times lower than angiosperm species. Longer generation times and larger genome sizes are some of the factors explaining the slow rates of molecular evolution found in gymnosperms. In contrast to their slow rates of molecular evolution, gymnosperms possess higher substitution rate ratios than angiosperm taxa. Finally, our study suggests stronger and more efficient purifying and diversifying selection in gymnosperm than in angiosperm species, probably in relation to larger effective population sizes.

  • 19.
    De La Torre, Amanda R
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lin, Yao-Cheng
    Van de Peer, Yves
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families2015In: Genome Biology and Evolution, ISSN 1759-6653, E-ISSN 1759-6653, Vol. 7, no 4, p. 1002-1015Article in journal (Refereed)
    Abstract [en]

    The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (> 50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.

  • 20. Du, Qingzhang
    et al.
    Tian, Jiaxing
    Yang, Xiaohui
    Pan, Wei
    Xu, Baohua
    Li, Bailian
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zhang, Deqiang
    Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa2015In: DNA research, ISSN 1340-2838, E-ISSN 1756-1663, Vol. 22, no 1, p. 53-67Article in journal (Refereed)
    Abstract [en]

    Economically important traits in many species generally show polygenic, quantitative inheritance. The components of genetic variation (additive, dominant and epistatic effects) of these traits conferred by multiple genes in shared biological pathways remain to be defined. Here, we investigated 11 full-length genes in cellulose biosynthesis, on 10 growth and wood-property traits, within a population of 460 unrelated Populus tomentosa individuals, via multi-gene association. To validate positive associations, we conducted single-marker analysis in a linkage population of 1,200 individuals. We identified 118, 121, and 43 associations (P < 0.01) corresponding to additive, dominant, and epistatic effects, respectively, with low to moderate proportions of phenotypic variance (R-2). Epistatic interaction models uncovered a combination of three non-synonymous sites from three unique genes, representing a significant epistasis for diameter at breast height and stem volume. Single-marker analysis validated 61 associations (false discovery rate, Q <= 0.10), representing 38 SNPs from nine genes, and its average effect (R-2 = 3.8%) nearly 2-fold higher than that identified with multi-gene association, suggesting that multi-gene association can capture smaller individual variants. Moreover, a structural gene-gene network based on tissue-specific transcript abundances provides a better understanding of the multi-gene pathway affecting tree growth and lignocellulose biosynthesis. Our study highlights the importance of pathway-based multiple gene associations to uncover the nature of genetic variance for quantitative traits and may drive novel progress in molecular breeding.

  • 21. Du, Shuhui
    et al.
    Wang, Zhaoshan
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Wang, Dongsheng
    Wang, Junhui
    Wu, Zhiqiang
    Tembrock, Luke R.
    Zhang, Jianguo
    Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species2015In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 24, no 19, p. 4994-5005Article in journal (Refereed)
    Abstract [en]

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P.tremula and P.davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P.tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles inthe formation of the disjunct distributions and divergence of these three Populus species.

  • 22.
    Gao, Jie
    et al.
    State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
    Wang, Baosheng
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Mao, Ian-Feng
    State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zeng, Qing-Yin
    State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
    Wang, Xiao-Ru
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
    Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau2012In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 21, no 19, p. 4811-4827Article in journal (Refereed)
    Abstract [en]

    Pinus densata is an ecologically successful homoploid hybrid that inhabits vast areas of heterogeneous terrain on the south-eastern Tibetan Plateau as a result of multiple waves of colonization. Its region of origin, route of colonization onto the plateau and the directions of introgression with its parental species have previously been defined, but little is known about the isolation and divergence history of its populations. In this study, we surveyed nucleotide polymorphism over eight nuclear loci in 19 representative populations of P. densata and its parental species. Using this information and coalescence simulations, we assessed the historical changes in its population size, gene flow and divergence in time and space. The results indicate a late Miocene origin for P. densata associated with the recent uplift of south-eastern Tibet. The subsequent differentiation between geographical regions of this species began in the late Pliocene and was induced by regional topographical changes and Pleistocene glaciations. The ancestral P. densata population had a large effective population size but the central and western populations were established by limited founders, suggesting that there were severe bottlenecks during the westward migration out of the ancestral hybrid zone. After separating from their ancestral populations, population expansion occurred in all geographical regions especially in the western range. Gene flow in P. densata was restricted to geographically neighbouring populations, resulting in significant differentiation between regional groups. The new information on the divergence and demographic history of P. densata reported herein enhances our understanding of its speciation process on the Tibetan Plateau.

  • 23. Grimberg, Åsa
    et al.
    Lager, Ida
    Street, Nathaniel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Robinson, Kathryn M
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Marttila, Salla
    Mähler, Niklas
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Ingvarsson, Pär K.
    Bhalerao, Rishikesh P.
    Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen2018In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 219, no 2, p. 619-630Article in journal (Refereed)
    Abstract [en]

    The signalling pathways that control seasonal modulation of carbon metabolism in perennial plants are poorly understood. Using genetic, metabolic and natural variation approaches, we identify factors mediating photoperiodic control of storage lipid accumulation in the model tree hybrid aspen (Populus tremula x tremuloides). We characterized lipid accumulation in transgenic hybrid aspen with impaired photoperiodic and hormonal responses. Genome-wide association mapping was performed in Swedish aspen (P.tremula) genotypes to determine genetic loci associated with genotype variation in lipid content. Our data show that the storage lipid triacylglycerol (TAG) accumulates in cambial meristem and pith rays of aspen in response to photoperiodic signal controlling growth cessation and dormancy induction. We show that photoperiodic control of TAG accumulation is mediated by the FLOWERING LOCUS T/CONSTANS module, which also controls the induction of growth cessation. Hormonal and chromatin remodelling pathways also contribute to TAG accumulation by photoperiodic signal. Natural variation exists in lipid accumulation that is controlled by input from multiple loci. Our data shed light on how the control of storage metabolism is temporally coordinated with growth cessation and dormancy by photoperiodic signal, and reveals that storage lipid accumulation between seeds and perennating organs of trees may involve distinct regulatory circuits.

  • 24.
    Hall, David
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Patterns of selection at the phytochrome A locus in European aspen (Populus tremula)Manuscript (preprint) (Other (popular science, discussion, etc.))
    Abstract [en]

    When a phenotype with a higher fitness arises in the population the underlying alleles are swept through the population until they reach fixation. The area surrounding the locus of the beneficial allele hitchhikes with the allele under selection, and the size of the area affected depends on the strength of selection. In Populus tremula a < 20kb region on linkage group 13 shows great reduction in synonymous diversity and an increase in rare and derived alleles as indicated by low negative values of Tajima's D and Fay and Wu's H. There is also an increase in associations between allleles at SNP sites in this region. We find that the sweep peaks in exon 2 of the phytochrome A gene. PHYA has not only undergone rapid protein evolution, it also show higher divergence in P. tremula than other plants examined, where it is unusually conserved, further pointing to adaptive significance of the increased rate of protein evolution seen in P. tremula.

  • 25.
    Hall, David
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Luquez, Virginia
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Garcia, Maribel Victoria
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    St Onge, Kate R
    Department of Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Sweden.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits2007In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 61, p. 2849-2860Article in journal (Refereed)
    Abstract [en]

    A correct timing of growth cessation and dormancy induction represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees (Rehfeldt et al. 1999; Horvath et al. 2003; Howe et al. 2003). We have studied the deciduous tree European Aspen (Populus tremula) across a latitudinal gradient and compared genetic differentiation in phenology traits with molecular markers. Trees from 12 different areas covering 10 latitudinal degrees were cloned and planted in two common gardens. Several phenology traits showed strong genetic differentiation and clinal variation across the latitudinal gradient, with QST values generally exceeding 0.5. This is in stark contrast to genetic differentiation at several classes of genetic markers (18 neutral SSRs, 7 SSRs located close to phenology candidate genes and 50 SNPs from five phenology candidate genes) that all showed FST values around 0.015. We thus find strong evidence for adaptive divergence in phenology traits across the latitudinal gradient. However, the strong population structure seen at the quantitative traits is not reflected in underlying candidate genes. This result fit theoretical expectations that suggest that genetic differentiation at candidate loci is better described by FST at neutral loci rather than by QST at the quantitative traits themselves.

  • 26.
    Hall, David
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ma, Xiao-Fei
    Program in Evolutionary Functional Genomics, Evolutionary Biology Center, Uppsala University.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Adaptive evolution of the Populus tremula photoperiod pathway2011In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 20, no 7, p. 1463-1474Article in journal (Refereed)
    Abstract [en]

    Environmental cues entrain the circadian clock, a core component of the photoperiod pathway in plants, to daily and seasonal changes. The circadian clock mediates input signals from light and temperature receptors to downstream target genes through feedback loops. Several studies have shown that a correct timing of the circadian system is a fitness advantage and genes in photoperiod network have been implied to evolve in response to the diversifying selection in heterogeneous environment. In an attempt to quantify the extent of the historical patterns of selection on genes in the photoperiod pathway in the widely distributed tree species European aspen (Populus tremula) we obtained sequences for twenty-five of the genes in the network and these genes were compared to patterns of nucleotide diversity in 77 randomly chosen genes from across the genome of P. tremula. We found a significant reduction in synonymous diversity in photoperiod genes while non-synonymous diversity was in line with data from control genes. A substantial fraction of the genes show signs of selection, with eight genes showing signs of rapid protein evolution. In contrast to our expectations, genes closely associated with the core circadian clock show rapid protein evolution despite their central position in the pathway. Furthermore, selection on non-synonymous mutations is negatively correlated with synonymous diversity across all genes, indicating the action of recurrent selective sweeps.

  • 27.
    Hall, David
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Tegström, Carolina
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Using association mapping to dissect the genetic basis of complex traits in plants2010In: Briefings in Functional Genomics & Proteomics, ISSN 1473-9550, E-ISSN 1477-4062, Vol. 9, no 2, p. 157-165Article in journal (Refereed)
    Abstract [en]

    Association or linkage disequilibrium mapping has become a very popular method for dissecting the genetic basis of complex traits in plants. The benefits of association mapping, compared with traditional quantitative trait locus mapping, is, for example, a relatively detailed mapping resolution and that it is far less time consuming since no mapping populations need to be generated. The surge of interest in association mapping has been fueled by recent developments in genomics that allows for rapid identification and scoring of genetic markers which has traditionally limited mapping experiments. With the decreasing cost of genotyping future emphasis will likely focus on phenotyping, which can be both costly and time consuming but which is crucial for obtaining reliable results in association mapping studies. In addition, association mapping studies are prone to the identification of false positives, especially if the experimental design is not rigorously controlled. For example, population structure has long been known to induce many false positives and accounting for population structure has become one of the main issues when implementing association mapping in plants. Also, with increasing numbers of genetic markers used, the problem becomes separating true from false positive and this highlights the need for independent validation of identified association. With these caveats in mind, association mapping nevertheless shows great promise for helping us understand the genetic basis of complex traits of both economic and ecological importance.

  • 28.
    Ingvarsson, P K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Exploitative competition between two seed parasites on the common sedge, Carex nigra2000In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 91, no 2, p. 362-370Article in journal (Refereed)
  • 29.
    Ingvarsson, P K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Spatial and temporal variation in disease levels of a floral smut (Anthracoidea heterospora) on Carex nigra1998In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 86, no 1, p. 53-61Article in journal (Refereed)
  • 30.
    Ingvarsson, P K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Olsson, K
    Ericson, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Extinction-recolonization dynamics in the mycophagous beetle Phalacrus substriatus1997In: Evolution, ISSN 0014-3820, E-ISSN 1558-5646, Vol. 51, no 1, p. 187-195Article in journal (Refereed)
    Abstract [en]

    The population structure of the mycophagous beetle Phalacrus substriatus is characterized by many small, local populations interconnected by migration over a small spatial scale (10 X 75 m(2)). Each local P. substriatus population has a relatively short expected persistence time, but persistence of the species occurs due to a balance between frequent local extinctions and recolonizations. This nonequilibrium population structure can have profound effects on how the genetic variation is structured between and within populations. Theoretical models have stated that the genetic differentiation among local populations will be enhanced relative to an island model at equilibrium if the number of colonizers is less than approximately twice the number of migrants among local populations. To study these effects, a set of 50 local P. substriatus populations were surveyed over a four-year period to record any naturally occurring extinctions and recolonizations. The per population colonization and extinction rate were 0.237 and 0.275, respectively. Mark-recapture techniques were used to estimate a number of demographic parameters: local population size (N = 11.1), migration rate ((m) over cap = 0.366), number of colonizers (k = 4.0), and the probability of common origin of colonizers (phi = 0.5). The theoretically predicted level of differentiation among local populations (measured as Wright's F-ST) was 0.070. Genetic data obtained from an electrophoretic survey of seven polymorphic loci gave an estimated degree of differentiation of 0.077. There was thus a good agreement between the empirical results and the theoretical predictions. Young populations (<(theta)over cap>(young) = 0.090) had significantly higher levels of differentiation than old, more established populations (<(theta)over cap>(old) = 0.059). The extinction-recolonization dynamics resulted in an overall increase in the genetic differentiation among local populations by c. 40%. The global effective population size was also reduced by c. 55%. The results give clear evidence to how nonequilibrium processes shape the genetic structure of populations.

  • 31.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Molecular evolution of synonymous codon usage in Populus2008In: BMC Evol Biol, ISSN 1471-2148, Vol. 8, p. 307-Article in journal (Refereed)
    Abstract [en]

    Background Evolution of synonymous codon usage is thought to be determined by a balance between mutation, genetic drift andnatural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. Results I examined the evolution of synonymous codons using EST data from five species of Populus. Data on relative synonymous codon usage in genes with high and low gene expression were used to identify 25 codons from 18 different amino acids that were deemed to be preferred codons across all five species.All five species show significant correlations between codon bias and gene expression, independent of base composition, thus indicating that translational selection has shaped synonymous codon usage. Using a set of 158 orthologous genes I detected an excess of unpreferred to preferred (U->P) mutations in two lineages, P. tremula and P. deltoides. Maximum likelihood estimates of the strength of selection acting on synonymous codons was also significantly greater than zero in P. tremula, with the ML estimate of 4N[es]=0.720. Conclusions The data is consistent with weak selection on preferred codons in all five species. There is also evidence suggesting that selection on synonymous codons has increased in P. tremula. Although the reasons for the increase in selection on codon usage in the P. tremula lineage are not clear, one possible explanation is an increase in the effective population size in P. tremula.

  • 32.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula.2008In: Genetics, ISSN 0016-6731, Vol. 180, no 1, p. 329-40Article in journal (Refereed)
    Abstract [en]

    I have studied nucleotide polymorphism and linkage disequilibrium using multilocus data from 77 fragments, with an average length of fragments of 550 bp, in the deciduous tree Populus tremula (Salicaceae). The frequency spectrum across loci showed a modest excess of mutations segregating at low frequency and a marked excess of high-frequency derived mutations at silent sites, relative to neutral expectations. These excesses were also seen at replacement sites, but were not so pronounced for high-frequency derived mutations. There was a marked excess of low-frequency mutations at replacement sites, likely indicating deleterious amino acid-changing mutations that segregate at low frequencies in P. tremula. I used approximate Bayesian computation (ABC) to evaluate a number of different demographic scenarios and to estimate parameters for the best-fitting model. The data were found to be consistent with a historical reduction in the effective population size of P. tremula through a bottleneck. The timing inferred for this bottleneck is largely consistent with geological data and with data from several other long-lived plant species. The results show that P. tremula harbors substantial levels of nucleotide polymorphism with the posterior mode of the scaled mutation rate, {theta} = 0.0177 across loci. The ABC analyses also provided an estimate of the scaled recombination rate that indicates that recombination rates in P. tremula are likely to be 2–10 times higher than the mutation rate. This study reinforces the notion that linkage disequilibrium is low and decays to negligible levels within a few hundred base pairs in P. tremula.

  • 33.
    Ingvarsson, Pär
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Bos, Antoine
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Natural genetic variation in CBF gene expressionManuscript (Other academic)
  • 34.
    Ingvarsson, Pär
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Garci­a, Maribel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Hall, David
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Luquez, Virginia
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula).2006In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 172, no 3, p. 1845-53Article in journal (Refereed)
    Abstract [en]

    The initiation of growth cessation and dormancy represents a critical ecological and evolutionary trade-off between survival and growth in most forest trees. The most important environmental cue regulating the initiation of dormancy is a shortening of the photoperiod and phytochrome genes have been implicated in short-day-induced bud set and growth cessation in Populus. We characterized patterns of DNA sequence variation at the putative candidate gene phyB2 in 4 populations of European aspen (Populus tremula) and scored single-nucleotide polymorphisms in an additional 12 populations collected along a latitudinal gradient in Sweden. We also measured bud set from a subset of these trees in a growth chamber experiment. Buds set showed significant clinal variation with latitude, explaining ~90% of the population variation in bud set. A sliding-window scan of phyB2 identified six putative regions with enhanced population differentiation and four SNPs showed significant clinal variation. The clinal variation at individual SNPs is suggestive of an adaptive response in phyB2 to local photoperiodic conditions. Three of four SNPs showing clinal variation were located in regions with excessive genetic differentiation, demonstrating that searching for regions of high genetic differentiation can be useful for identifying sites putatively involved in local adaptation.

  • 35.
    Ingvarsson, Pär
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Garcia, Maribel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Luquez, Virginia
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Hall, David
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 Locus in European aspen (Populus tremula, Salicaceae).2008In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 178, no 4, p. 2217-26Article in journal (Refereed)
    Abstract [en]

    We investigated the utility of association mapping to dissect the genetic basis of naturally occurring variation in bud phenology in European aspen (Populus tremula). With this aim, we surveyed nucleotide polymorphism in 13 fragments spanning an 80-kb region surrounding the phytochrome B2 (phyB2) locus. Although polymorphism varies substantially across the phyB2 region, we detected no signs for deviations from neutral expectations. We also identified a total of 41 single nucleotide polymorphisms (SNPs) that were subsequently scored in a mapping population consisting of 120 trees. We identified two nonsynonymous SNPs in the phytochrome B2 gene that were independently associated with variation in the timing of bud set and that explained between 1.5 and 5% of the observed phenotypic variation in bud set. Earlier studies have shown that the frequencies of both these SNPs vary clinally with latitude. Linkage disequilibrium across the region was low, suggesting that the SNPs we identified are strong candidates for being causally linked to variation in bud set in our mapping populations. One of the SNPs (T608N) is located in the "hinge region," close to the chromophore binding site of the phyB2 protein. The other SNP (L1078P) is located in a region supposed to mediate downstream signaling from the phyB2 locus. The lack of population structure, combined with low levels of linkage disequilibrium, suggests that association mapping is a fruitful method for dissecting naturally occurring variation in Populus tremula.

  • 36.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Molecular population genetics of herbivore-induced protease inhibitor genes in European aspen (Populus tremula, L., Salicaceae)2005In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 22, no 9, p. 1802-1812Article in journal (Refereed)
    Abstract [en]

    Plants defend themselves against the attack of natural enemies by using an array of both constitutively expressed and induced defenses. Long-lived woody perennials are overrepresented among plant species that show strong induced defense responses, whereas annual plants and crop species are underrepresented. However, most studies of plant defense genes have been performed on annual or short-lived perennial weeds or crop species. Here I use molecular population genetic methods to survey six wound-inducible protease inhibitors (PIs) in a long-lived woody, perennial plant species, the European aspen (Populus tremula), to evaluate the likelihood of either recurrent selective sweeps or balancing selection maintaining amino acid polymorphisms in these genes. The results show that none of the six PI genes have reduced diversities at synonymous sites, as would be expected in the presence of recurrent selective sweeps. However, several genes show some evidence of nonneutral evolution such as enhanced linkage disequilibrium and a large number of high-frequency-derived mutations. A group of at least four Kunitz trypsin inhibitor genes appear to have experienced elevated levels of nonsynonymous substitutions, indicating allelic turnover on an evolutionary timescale. One gene, T11, has enhanced levels of intraspecific polymorphism at nonsynonymous sites and also has an unusual haplotype structure characterized by two divergent haplotypes occurring at roughly equal frequencies in the sample. One haplotype has very low levels of intraallelic nucleotide diversity, whereas the other haplotype has levels of diversity comparable to other genes in P. tremula. Patterns of sequence diversity at T11 do not fit a simple model of either balancing selection or recurrent selective sweeps. This suggests that selection at T11 is more complex, possibly involving allelic cycling.

  • 37.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Natural selection on synonymous and non-synonymous mutations shape patterns of polymorphism in Populus tremula2010In: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 27, no 3, p. 650-660Article in journal (Refereed)
    Abstract [en]

    One important goal of population genetics is to understand the relative importance of different evolutionary processes for shaping variation in natural populations. Here, I use multilocus data to show that natural selection on both synonymous and nonsynonymous mutations plays an important role in shaping levels of synonymous polymorphism in European aspen (Populus tremula). Previous studies have documented a preferential fixation of synonymous mutations encoding preferred codons in P. tremula. The results presented here show that this has resulted in an increase in codon bias in P. tremula, consistent with stronger selection acting on synonymous codon usage. In addition, positive selection on nonsynonymous mutations appears to be common in P. tremula, with approximately 30% of all mutations having been fixed by positive selection. In addition, the recurrent fixation of beneficial mutations also reduces standing levels of polymorphism as evidenced by a significantly negative relationship between the rate of protein evolution synonymous site diversity and silent site diversity. Finally, I use approximate Bayesian methods to estimate the strength of selection acting on beneficial substitutions. These calculations show that recurrent hitchhiking reduces polymorphism by, on average, 30%. The product of strength of selection acting on beneficial mutations and the rate by which these occur across the genome (2Nes) equals 1.54x10 – 7, which is in line with estimates from Drosophila where recurrent hitchhiking has also been shown to have significant effects on standing levels of polymorphism.

  • 38.
    Ingvarsson, Pär K.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCentre, Uppsala, Sweden.
    Dahlberg, Helena
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees2019In: Scandinavian Journal of Forest Research, ISSN 0282-7581, E-ISSN 1651-1891, Vol. 34, no 5, p. 370-379Article in journal (Refereed)
    Abstract [en]

    The level of genetic diversity maintained in a population is determined by the combined action of mutation, gene flow, genetic drift and selection. Forest tree breeding is a relatively recent phenomenon compared to most crop species and the material that is being deployed is, genetically, often very similar to wild-growing populations. The introduction of vegetative propagation has been hailed as a more efficient and flexible method than seed orchards to rapidly realize breeding progress and to adapt material to future climate change. What remains unclear is how a large deployment of vegetatively propagated material may affect the patterns of genetic diversity within and among forest stands. Here we review what is currently known about genetic diversity in managed and natural forest stands and specifically address the impacts of clonal forestry. To assess this we develop a quantitative model to describe the consequences of clone deployment on genetic and genotypic diversity in Swedish forests. We conclude with some remarks specific to Swedish conditions, likely scenarios for clonal deployment and finally some suggestions for future research priorities.

  • 39.
    Ingvarsson, Pär K.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Hvidsten, Torgeir R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432,As, Norway.
    Street, Nathaniel R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Towards integration of population and comparative genomics in forest trees2016In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 212, no 2, p. 338-344Article, review/survey (Refereed)
    Abstract [en]

    The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.

  • 40.
    Ingvarsson, Pär K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Street, Nathaniel R
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Association genetics of complex traits in plants2011In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 189, no 4, p. 909-922Article in journal (Refereed)
    Abstract [en]

    Association mapping is rapidly becoming the main method for dissecting the genetic architecture of complex traits in plants. Currently most association mapping studies in plants are preformed using sets of genes selected to be putative candidates for the trait of interest, but rapid developments in genomics will allow for genome-wide mapping in virtually any plant species in the near future. As the costs for genotyping are decreasing, the focus has shifted towards phenotyping. In plants, clonal replication and/or inbred lines allows for replicated phenotyping under many different environmental conditions. Reduced sequencing costs will increase the number of studies that use RNA sequencing data to perform expression quantitative trait locus (eQTL) mapping, which will increase our knowledge of how gene expression variation contributes to phenotypic variation. Current population sizes used in association mapping studies are modest in size and need to be greatly increased if mutations explaining less than a few per cent of the phenotypic variation are to be detected. Association mapping has started to yield insights into the genetic architecture of complex traits in plants, and future studies with greater genome coverage will help to elucidate how plants have managed to adapt to a wide variety of environmental conditions.

  • 41.
    Ingvarsson, Pär K.
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Wang, Jing
    Small- and large-scale heterogeneity in genetic variation across the collard flycatcher genome: implications for estimating genetic diversity in nonmodel organisms2017In: Molecular Ecology Resources, ISSN 1755-098X, E-ISSN 1755-0998, Vol. 17, no 4, p. 583-585Article in journal (Refereed)
    Abstract [en]

    Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole-genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site-associated DNA sequencing (RAD-seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole-genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation-related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.

  • 42. Ismail, Mohamed
    et al.
    Soolanayakanahally, Raju Y.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Guy, Robert D.
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Silim, Salim N.
    El-Kassaby, Yousry A.
    Comparative Nucleotide Diversity Across North American and European Populus Species2012In: Journal of Molecular Evolution, ISSN 0022-2844, E-ISSN 1432-1432, Vol. 74, no 5-6, p. 257-272Article in journal (Refereed)
    Abstract [en]

    Nucleotide polymorphisms in two North American balsam poplars (Populus trichocarpa Torr. & Gray and P. balsamifera L.; section Tacamahaca), and one Eurasian aspen (P. tremula L.; section Populus) were compared using nine loci involved in defense, stress response, photoperiodism, freezing tolerance, and housekeeping. Nucleotide diversity varied among species and was highest for P. tremula (theta (w) = 0.005, pi (T) = 0.007) as compared to P. balsamifera (theta (w) = 0.004, pi (T) = 0.005) or P. trichocarpa (theta (w) = 0.002, pi (T) = 0.003). Across species, the defense and the stress response loci accounted for the majority of the observed level of nucleotide diversity. In general, the studied loci did not deviate from neutral expectation either at the individual locus (non-significant normalized Fay and Wu's H) or at the multi-locus level (non-significant HKA test). Using molecular clock analysis, section Tacamahaca probably shared a common ancestor with section Populus approximately 4.5 million year ago. Divergence between the two closely related balsam poplars was about 0.8 million years ago, a pattern consistent with an isolation-with-migration (IM) model. As expected, P. tremula showed a five-fold higher substitution rate (2 x 10(-8) substitution/site/year) compared to the North American species (0.4 x 10(-8) substitution/site/year), probably reflecting its complex demographic history. Linkage disequilibrium (LD) varied among species with a more rapid decay in the North American species (< 400 bp) in comparison to P. tremula (a parts per thousand << 400 bp). The similarities in nucleotide diversity pattern and LD decay of the two balsam poplar species likely reflects the recent time of their divergence.

  • 43.
    Jansson, Stefan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Cohort-structured tree populations2010In: Heredity, ISSN 0018-067X, E-ISSN 1365-2540, Vol. 105, no 4, p. 331-332Article in journal (Refereed)
  • 44.
    Johansson, Frank
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lind, Martin I.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Bokma, Folmer
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Evolution of the G-matrix in life history traits in the common frog during a recent colonisation of an island system2012In: Evolutionary Ecology, ISSN 0269-7653, E-ISSN 1573-8477, Vol. 26, no 4, p. 863-878Article in journal (Refereed)
    Abstract [en]

    Studies of genetic correlations between traits that ostensibly channel the path of evolution away from the direction of natural selection require information on key aspects such as ancestral phenotypes, the duration of adaptive evolution, the direction of natural selection, and genetic covariances. In this study we provide such information in a frog population system. We studied adaptation in life history traits to pool drying in frog populations on islands of known age, which have been colonized from a mainland population. The island populations show strong local adaptation in development time and size. We found that the first eigenvector of the variance-covariance matrix (g (max)) had changed between ancestral mainland populations and newly established island populations. Interestingly, there was no divergence in g (max) among island populations that differed in their local adaptation in development time and size. Thus, a major change in the genetic covariance of life-history traits occurred in the colonization of the island system, but subsequent local adaptation in development time took place despite the constraints imposed by the genetic covariance structure.

  • 45. Johansson, Helena
    et al.
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Johansson, Frank
    Cross-species amplification and development of microsatellites for six species of European Coenagrionid damselflies2012In: Conservation Genetics Resources, ISSN 1877-7252, E-ISSN 1877-7260, Vol. 4, no 1, p. 191-196Article in journal (Refereed)
    Abstract [en]

    We describe the cross-amplification and development of new loci for six species of closely related European damselflies. First, twenty-nine published microsatellites for the damselflies Coenagrion puella and C. mercuriale were multiplexed using M13-tagged primers, tested on 23 individuals, and then cross-species amplified on 21-26 individuals of C. armatum, C. johanssoni, C. pulchellum and C. scitulum. Second, sixteen new primers were developed for use in C. armatum, C. johanssoni and C. scitulum, and screened on 21 individuals. Values for observed heterozygosities and number of alleles ranged between 0.00-0.87 and 2-19 respectively (over all loci and species). For all species the tested loci provide a minimum of 1-8 usable markers for population genetic studies.

  • 46.
    Johansson, Helena
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Centre of Excellence in Biological Interactions, Dept of Biosciences, Helsinki Univ., PO Box 65, FI-00014 Helsinki.
    Stoks, Robby
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Centre of Excellence in Biological Interactions, Dept of Biosciences, Helsinki Univ., PO Box 65, FI-00014 Helsinki.
    Nilsson-Örtman, Viktor
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Centre of Excellence in Biological Interactions, Dept of Biosciences, Helsinki Univ., PO Box 65, FI-00014 Helsinki.
    Ingvarsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Centre of Excellence in Biological Interactions, Dept of Biosciences, Helsinki Univ., PO Box 65, FI-00014 Helsinki.
    Johansson, Frank
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Centre of Excellence in Biological Interactions, Dept of Biosciences, Helsinki Univ., PO Box 65, FI-00014 Helsinki.
    Large-scale patterns in genetic variation, gene flow and differentiation in five species of European Coenagrionid damselfly provide mixed support for the central-marginal hypothesis2013In: Ecography, ISSN 0906-7590, E-ISSN 1600-0587, Vol. 36, no 6, p. 744-755Article in journal (Refereed)
    Abstract [en]

    Recently, an increased effort has been directed towards understanding the distribution of genetic variation within and between populations, particularly at central and marginal areas of a species' distribution. Much of this research is centred on the central-marginal hypothesis, which posits that populations at range margins are sparse, small and genetically diminished compared to those at the centre of a species' distribution range. We tested predictions derived from the central-marginal hypothesis for the distribution of genetic variation and population differentiation in five European Coenagrionid damselfly species. We screened genetic variation (microsatellites) in populations sampled in the centre and margins of the species' latitudinal ranges, assessed genetic diversity (HS) in the populations and the distribution of this genetic diversity between populations (FST). We further assessed genetic substructure and migration with Bayesian assignment methods, and tested for significant associations between genetic substructure and bioclimatic and spatial (altitude and latitude) variables, using general linearized models. We found no general adherence to the central-marginal hypothesis; instead we found that other factors such as historical or current ecological factors often better explain the patterns uncovered. This was illustrated in Coenagrion mercuriale whose colonisation history and behaviour most likely led to the observation of a high genetic diversity in the south and lower genetic diversity with increasing latitude, and in C. armatum and C. pulchellum whose patterns of low genetic diversity coupled with the weakest genetic differentiation at one of their range margins suggested, respectively, possible range shifts and recent, strong selection pressure.

  • 47. Keller, Stephen R
    et al.
    Levsen, Nicholas
    Ingvarsson, Pär K
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Olson, Matthew S
    Tiffin, Peter
    Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L2011In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 188, no 4, p. 941-952Article in journal (Refereed)
    Abstract [en]

    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps.

  • 48. Klintenas, Maria
    et al.
    Pin, Pierre A.
    Benlloch, Reyes
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Nilsson, Ove
    Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage2012In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 196, no 4, p. 1260-1273Article in journal (Refereed)
    Abstract [en]

    In flowering plants, homologs of the Arabidopsis phosphatidylethanolamine-binding protein (PEBP) FLOWERING LOCUS T (FT) are key components in controlling flowering time. We show here that, although FT homologs are found in all angiosperms with completed genome sequences, there is no evidence to date that FT-like genes exist in other groups of plants. Through phylogeny reconstructions and heterologous expression, we examined the biochemical function of the Picea (spruces) and Pinus (pines) PEBP families two gymnosperm taxa phylogenetically distant from the angiosperms. We have defined a lineage of gymnosperm PEBP genes, termed the FT/TERMINAL FLOWER1 (TFL1)-like genes, that share sequence characteristics with both the angiosperm FT- and TFL1-like clades. When expressed in Arabidopsis, FT/TFL1-like genes repressed flowering, indicating that the proteins are biochemically more similar to the angiosperm TFL1-like proteins than to the FT-like proteins. This suggests that the regulation of the vegetative-to-reproductive switch might differ in gymnosperms compared with angiosperms. Molecular evolution studies suggest that plasticity at exon 4 contributes to the divergence of FT-like function in floral promotion. In addition, the presence of FT-like genes in basal angiosperms indicates that the FT-like function emerged at an early stage during the evolution of flowering plants as a means to regulate flowering time.

  • 49. Li, Zhen
    et al.
    De La Torre, Amanda R.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Sciences, University of California-Davis, Davis, CA.
    Sterck, Lieven
    Cánovas, Francisco M.
    Avila, Concepción
    Merino, Irene
    Antonio Cabezas, Jose
    Teresa Cervera, Maria
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Van de Peer, Yves
    Single-Copy Genes as Molecular Markers for Phylogenomic Studies in Seed Plants2017In: Genome Biology and Evolution, ISSN 1759-6653, E-ISSN 1759-6653, Vol. 9, no 5, p. 1130-1147Article in journal (Refereed)
    Abstract [en]

    Phylogenetic relationships among seed plant taxa, especially within the gymnosperms, remain contested. In contrast to angio-sperms, for which several genomic, transcriptomic and phylogenetic resources are available, there are few, if any, molecular markers that allow broad comparisons among gymnosperm species. With few gymnosperm genomes available, recently obtained transcriptomes in gymnosperms are a great addition to identifying single-copy gene families as molecular markers for phylogenomic analysis in seed plants. Taking advantage of an increasing number of available genomes and transcriptomes, we identified single-copy genes in a broad collection of seed plants and used these to infer phylogenetic relationships between major seed plant taxa. This study aims at extending the current phylogenetic toolkit for seed plants, assessing its ability for resolving seed plant phylogeny, and discussing potential factors affecting phylogenetic reconstruction. In total, we identified 3,072 single-copy genes in 31 gymnosperms and 2,156 single-copy genes in 34 angiosperms. All studied seed plants shared 1,469 single-copy genes, which are generally involved in functions like DNA metabolism, cell cycle, and photosynthesis. A selected set of 106 single-copy genes provided good resolution for the seed plant phylogeny except for gnetophytes. Although some of our analyses support a sister relationship between gnetophytes and other gymnosperms, phylogenetic trees from concatenated alignments without 3rd codon positions and amino acid alignments under the CAT + GTR model, support gnetophytes as a sister group to Pinaceae. Our phylogenomic analyses demonstrate that, in general, single-copy genes can uncover both recent and deep divergences of seed plant phylogeny.

  • 50. Lin, Yao-Cheng
    et al.
    Wang, Jing
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
    Delhomme, Nicolas
    Schiffthaler, Bastian
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Sundström, Görel
    Zuccolo, Andrea
    Nystedt, Björn
    Hvidsten, Torgeir R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    de la Torre, Amanda
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). School of Forestry, Northern Arizona University, Flagstaff, AZ.
    Cossu, Rosa M.
    Hoeppner, Marc P.
    Lantz, Henrik
    Scofield, Douglas G.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Sweden; Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Sweden.
    Zamani, Neda
    Johansson, Anna
    Mannapperuma, Chanaka
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Robinson, Kathryn M.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Mähler, Niklas
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Leitch, Ilia J.
    Pellicer, Jaume
    Park, Eung-Jun
    Van Montagu, Marc
    Van de Peer, Yves
    Grabherr, Manfred
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Street, Nathaniel R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen2018In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 115, no 46, p. E10970-E10978Article in journal (Refereed)
    Abstract [en]

    The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).

12 1 - 50 of 76
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf