Digitala Vetenskapliga Arkivet

Ändra sökning
Avgränsa sökresultatet
1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hellström, Henrik
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.
    Luvisotto, Michele
    Jansson, R.
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elektroteknik, Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap.
    Software-Defined Wireless Communication for Industrial Control: A Realistic Approach2019Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 13, nr 4, s. 31-37, artikel-id 8939293Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wireless communication for industrial applications of fers multiple advantages over traditional wired communicat ion, such a s reduced installation and maintenance costs, increased flexibility, and better suitability for harsh conditions and mobile environments. However, many industrial applications feature high-performance requirements for latency and reliability, challenges which are difficult are to meet over the wireless channel. Currently available wireless technologies struggle to achieve these requirements, leaving a gap between industry demands and state-of-the-art performance. To close this gap, traditional solutions that rely on general-purpose chipsets could be replaced with dedicated solutions for industrial applications. In this article, we discuss the feasibility of designing an industrial wireless solution based on software-defined radio (SDR), the obtained results, and the role of softwarization in the future of industrial communication.

  • 2.
    Huang, Victor K. L.
    et al.
    Sage Technol Resources, Richmond, VA USA.;Sage Technol Resources, IT Automot Sect Elect Vehicles, Richmond, VA USA.;Six Silicon Valley, Richmond, VA USA.;IES, Richmond, VA USA.;IES Stand Tech Comm, Richmond, VA USA.;IES IEEE Stand Assoc, Richmond, VA USA.;IEEE Commun Soc, Richmond, VA USA.;IEEE Tech Engn Management Soc, Richmond, VA USA..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. ABB Corp Res, Wireless Commun, Västerås, Sweden;Tsinghua Univ, Beijing, Peoples R China.;Univ Sydney, Sydney, NSW, Australia.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Chen, Cheng-Jen (Allen)
    IES Stand Tech Comm, Richmond, VA USA..
    Tsang, Kim Fung
    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China.;Internet Things Comm, Smart City Consortium, Hong Kong, Hong Kong, Peoples R China..
    New Trends in the Practical Deployment of Industrial Wireless2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 2, s. 50-58Artikel i tidskrift (Refereegranskat)
  • 3.
    Jiang, Xiaolin
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Pang, Zhibo
    ABB Corporate Research, Sweden.
    N. Jansson, Roger
    ABB Corporate Research, Sweden.
    Pan, Fei
    University of Electronic Science and Technology of China, China.
    Fischione, Carlo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Fundamental Constraints for Time-slotted MAC Design in Wireless High Performance : the Realistic Perspective of Timing2018Konferensbidrag (Refereegranskat)
    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Jiang, Xiaolin
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
    Zhan, Ming
    KTH.
    Dzung, Dacfey
    Luvisotto, Michele
    Fischione, Carlo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Packet Detection by Single OFDM Symbol in URLLC for Critical Industrial Control: a Realistic Study2018Ingår i: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008Artikel i tidskrift (Övrigt vetenskapligt)
  • 5.
    Jiang, Xiaolin
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik. KTH.
    Shokri-Ghadikolaei, Hossein
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Fischione, Carlo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Nätverk och systemteknik.
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik.
    A Simplified Interference Model for Outdoor Millimeter-waveNetworks2019Ingår i: Mobile Networks and Applications, ISSN 1383-469X, Vol. 24, nr 3, s. 983-990Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Industry 4.0 is the emerging trend of the industrial automation. Millimeter-wave (mmWave) communication is a prominent technology for wireless networks to support the Industry 4.0 requirements. The availability of tractable accurate interference models would greatly facilitate performance analysis and protocol development for these networks. In this paper, we investigate the accuracy of an interference model that assumes impenetrable obstacles and neglects the sidelobes. We quantify the error of such a model in terms of statistical distribution of the signal to noise plus interference ratio and of the user rate for outdoor mmWave networks under different carrier frequencies and antenna array settings. The results show that assuming impenetrable obstacle comes at almost no accuracy penalty, and the accuracy of neglecting antenna sidelobes can be guaranteed with sufficiently large number of antenna elements. The comprehensive discussions of this paper provide useful insights for the performance analysis and protocol design of outdoor mmWave networks.

    Ladda ner fulltext (pdf)
    fulltext
  • 6.
    Mumtaz, Shahid
    et al.
    Inst Telecomunicacoes Aveiro, Aveiro, Portugal.;Ericsson, Karlskrona, Sweden.;Huawei Res Labs, Karlskrona, Sweden..
    Alsohaily, Ahmed
    Univ Toronto, Wireless Lab, Dept Elect & Comp Engn, Toronto, ON M5S 1A1, Canada.;Next Generat Mobile Networks Alliance, Frankfurt, Germany.;Telus, Technol strategy team, Vancouver, BC, Canada..
    Pang, Zhibo
    KTH. Asea Brown Boveri Corp Res, Baden, Switzerland..;Tsinghua Univ, Beijing, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Rayes, Ammar
    Cisco Syst, San Jose, CA USA..
    Tsang, Kim Fung
    City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China..
    Rodriguez, Jonathan
    Ctr Commun Syst Res, Surrey, England.;Inst Telecomunicacoes, Lisbon, Portugal..
    Massive Internet of Things for Industrial Applications2017Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 11, nr 1, s. 28-33Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This article provides an overview of the development and standardizations of connectivity solutions for enabling the Industrial Internet of Things (IIoT). It also highlights key IIoT connectivity technologies and platforms that have the potential of driving the next industrial revolution. In addition, the article addresses the main challenges standing in the way of realizing the full potential of the IIoT, namely attaining secure connectivity and managing a vastly fragmented ecosystem of connectivity solutions and platforms. Finally, IIoT connectivity challenges are illustrated by the example of future building automation.

  • 7.
    Pan, Fei
    et al.
    Univ Elect Sci & Technol China, Natl Key Lab Sci & Technol Commun, Chengdu, Sichuan, Peoples R China..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. ABB Corp Res, Wireless Commun, Västerås, Sweden.;Tsinghua Univ, Beijing, Peoples R China.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Luvisotto, Michele
    ABB Corp Res Ctr, Vasteras, Sweden..
    Xiao, Ming
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
    Wen, Hong
    Univ Waterloo, Elect & Comp Engn Dept, Waterloo, ON, Canada.;Univ Elect Sci & Technol China, Chengdu, Sichuan, Peoples R China..
    Physical-Layer Security for Industrial Wireless Control Systems2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 4, s. 18-27Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wireless networks for industrial control systems are promising because of their reduced cost, flexible structure, and improved long-term reliability. However, wireless control systems are vulnerable to probing-free attacks (PFAs), which are not possible in wired control systems. Thus, wireless control systems must be made as secure as wired systems. Physical (PHY)-layer security technology (PHY-Sec) may be a new strategy for securing industrial wireless control systems. Among all PHY-Sec technologies, PHY-layer authentication is the first step for PHYSec in industrial wireless control systems. This article discusses the principles of PHY-Sec, its application to wireless control systems, and potential research directions.

  • 8.
    Vitturi, Stefano
    et al.
    European Fus Res Program, Automat & Informat Grp, Control & Data Acquisit Syst RFX, Padua, Italy.;Univ Padua, Padua, Italy.;Natl Res Council Italy CNR IEIIT, Inst Elect & Comp & Telecommun, Padua Terr Site, Padua, Italy.;CNR IEIIT, Padua, Italy..
    Sauter, Thilo
    Inst Gen Elect Engn, Vienna, Austria.;TU Wien, Inst Comp Technol, Factory Commun Grp, Vienna, Austria.;TU Wien, Inst Comp Technol, Vienna, Austria.;Hefei Univ Technol, Hefei, Anhui, Peoples R China.;Univ Pretoria, Pretoria, South Africa.;Univ Brescia, Brescia, Italy.;Univ Balear Isl, Palma De Mallorca, Spain.;Austrian Acad Sci, Inst Integrated Sensor Syst, Vienna, Austria.;Danube Univ Krems, Ctr Integrated Sensor Syst, Wiener Neustadt, Austria.;Austrian Assoc Instrumentat Automat & Robot, Vienna, Austria..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Teknisk informationsvetenskap. Ambigua Medito AB, Kista, Sweden.;ABB Corp Res, Wireless Commun, Vasteras, Sweden.;Tsinghua Univ, Beijing, Peoples R China.;BUPT, Beijing, Peoples R China.;Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou, Zhejiang, Peoples R China..
    Real-Time Networks and Protocols for Factory Automation and Process Control Systems2019Ingår i: Proceedings of the IEEE, ISSN 0018-9219, E-ISSN 1558-2256, Vol. 107, nr 6, s. 939-943Artikel i tidskrift (Refereegranskat)
  • 9.
    Zhan, Ming
    et al.
    KTH. Royal Inst Technol, Stockholm, Sweden.;ABB Corp Res Ctr, Vasteras, Sweden.;Southwest Univ, Coll Elect & Informat Engn, Chongqing, Peoples R China..
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Elkraftteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. KTH, Stockholm, Sweden.;Tsinghua Univ, Beijing, Peoples R China.;Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China.;Beijing Univ Posts & Telecommun, Beijing, Peoples R China..
    Xiao, Ming
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap. Royal Inst Technol, Commun Theory, Sch Elect Engn & Comp Sci, Stockholm, Sweden..
    Luvisotto, Michele
    ABB Corp Res Ctr, Vasteras, Sweden..
    Dzung, Dacfey
    ABB Corp Res, Ind & Util Commun, Baden, Switzerland..
    Wireless High-Performance Communications Improving Effectiveness and Creating Ultrahigh Reliability with Channel Coding2018Ingår i: IEEE Industrial Electronics Magazine, ISSN 1932-4529, E-ISSN 1941-0115, Vol. 12, nr 3, s. 32-37Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To meet a set of stringent requirements for wireless control in critical applications, the described wireless high-performance (WirelessHP) communication system represents a breakthrough regarding microsecondlevel latency, but the proof of ultrahigh reliability is still lacking. To this aim, we propose the incorporation of channel coding in its physical layer. Building on a customized protocol stack and a hardware demonstrator, we prove the effectiveness of channel coding and suggest further research in this area.

  • 10. Zhao, G.
    et al.
    Imran, M. A.
    Pang, Zhibo
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Teknisk informationsvetenskap.
    Chen, Z.
    Li, L.
    Toward Real-Time Control in Future Wireless Networks: Communication-Control Co-Design2019Ingår i: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 57, nr 2, s. 138-144, artikel-id 8558500Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wireless networks are undergoing a transition from connecting people to connecting things, which will allow human interaction with the physical world in a real-time fashion, for example, Tactile Internet, industrial automation, self-driving vehicles, and remote surgery. Therefore, future wireless networks need to support real-time control since it is the essential function enabling such emerging applications. In this article, some fundamental design capabilities needed to realize real-time control in future wireless networks are discussed, with primary emphasis given to communication-control because both communication and control systems have strong dynamics and interdependencies, and they tightly interact with each other. A case study is provided to demonstrate the necessity of such co-design.

1 - 10 av 10
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf