Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Optical Interconnects for Next Generation Data Centers: Architecture Design and Resource Allocation2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The current data center architectures based on blade servers and elec- tronic packet switches face several problems, e.g., limited resource utilization, high power consumption and cost, when handling the rapidly growing of data traffic. Optical networks offering ultra-high capacity and requiring low energy consumption are considered as a good option to address these problems. This thesis presents new data center architectures based on optical interconnects and transmissions, and evaluates performance by extensive simulations.

    The first main contribution of the thesis is to introduce a passive optical top-of-rack interconnect (POTORI) architecture. The data plane of POTORI mainly consists of passive components to interconnect the servers within the rack. Using the passive components makes it possible to significantly reduce power consumption while achieving high reliability in a cost-efficient way. In addition, the POTORI’s control plane is based on a centralized controller, which is responsible for coordinating the communications among the servers in the rack. A cycle-based medium access control (MAC) protocol and a dy- namic bandwidth allocation (DBA) algorithm are designed for the POTORI to efficiently manage the exchange of control messages and the data transmis- sion inside the rack. Simulation results show that under realistic DC traffic scenarios, the POTORI with the proposed DBA algorithm is able to achieve an average packet delay below 10 μs with the use of fast tunable optical transceivers.

    The second main contribution of the thesis is to investigate rack-scale disaggregated data center (DDC) architecture for improving resource utiliza- tion. In contrast to the traditional DC with blade servers that integrate various types of resources (e.g., central processing unit (CPU), memory) in a chassis, the rack-scale DDC contains fully decoupled resources held on differ- ent blades, referred to as resource blades. The resource blades are required to be interconnected within the rack by an ultra-high bandwidth optical in- terconnect through the optical interfaces (OIs). A resource allocation (RA) algorithm is proposed to efficiently schedule the resources in the DDC for virtual machine requests. Results show that with sufficient bandwidth on the OIs, the rack-scale DDC with the proposed RA algorithm can achieve 20% higher resource utilization and make 30% more revenue comparing to the traditional DC.

  • 2.
    Cheng, Yuxin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    De Andrade, Marilet
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Wosinska, Lena
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Resource Disaggregation versus Integrated Servers in Data Centers: Impact of Internal Transmission Capacity Limitation2018In: Proceedings 2018 European Conference on Optical Communication (ECOC), Institute of Electrical and Electronics Engineers (IEEE), 2018Conference paper (Refereed)
    Abstract [en]

    This paper shows that internal transmission capacity limitations in disaggregated data centers cannot be ignored. Insufficient capacity may reduce the inherent benefits of resource disaggregation in terms of resource utilization compared to the integrated solutions.

  • 3.
    Cheng, Yuxin
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS. KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Fiorani, Matteo
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Lin, Rui
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Wosinska, Lena
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS.
    POTORI: A Passive Optical Top-of-Rack Interconnect Architecture for Data Centers2017In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 9, no 5, p. 401-411Article in journal (Refereed)
    Abstract [en]

    Several optical interconnect architectures inside data centers (DCs) have been proposed to efficiently handle the rapidly growing traffic demand. However, not many works have tackled the interconnects at top-of-rack (ToR), which have a large impact on the performance of the data center networks (DCNs) and can introduce serious scalability limitations due to their high cost and power consumption. In this paper, we propose a passive optical ToR interconnect architecture (POTORI) to replace the conventional electronic packet switch (EPS) in the access tier of DCNs. In the data plane, POTORI relies on a passive optical coupler to interconnect the servers within the rack and interfaces toward the aggregation/core tiers. The POTORI control plane is based on a centralized rack controller responsible for managing the communications among the servers in the rack. We propose a cycle-based medium access control (MAC) protocol to efficiently manage the exchange of control messages and the data transmission inside the rack. We also introduce and evaluate a dynamic bandwidth allocation algorithm for POTORI, namely largest first (LF). Extensive simulation results show that, with the use of fast tunable optical transceivers, POTORI and the proposed LF strategy are able to achieve an average packet delay below 10 μs under realistic DC traffic scenarios, outperforming conventional EPSs. On the other hand, with slower tunable optical transceivers, a careful configuration of the network parameters (e.g., maximum cycle time of the MAC protocol) is necessary to obtain a good network performance in terms of the average packet delay.

  • 4.
    Cheng, Yuxin
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    De Andrade, Marilet
    Ericsson Research, Sweden.
    Wosinska, Lena
    Department of Electrical Engineering, Chalmers University of Technology, Sweden.
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Disaggregated Data Centers: Challenges and Tradeoffs2019In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896Article in journal (Other academic)
    Abstract [en]

    Resource utilization of modern data centers is significantly limited by the mismatch between the diversity of the resources required by running applications and the fixed amount of hardwired resources (e.g., number of central processing unit CPU cores, size of memory) in the server blades. In this regard, the concept of function disaggregation is introduced, where the integrated server blades containing all types of resources are replaced by the resource blades including only one specific function. Therefore, disaggregated data centers can offer high flexibility for resource allocation and hence their resource utilization can be largely improved. In addition, introducing function disaggregation simplifies the system upgrade, allowing for a quick adoption of new generation components in data centers. However, the communication between different resources faces severe problems in terms of latency and transmission bandwidth required. In particular,the CPU-memory interconnects in fully disaggregated data centers require ultra-low latency and ultra-high transmission bandwidth in order to prevent performance degradation for running applications. Optical fiber communication is a promising technique to offer high capacity and low latency, but it is still very challenging for the state-of-the-art optical transmission technologies to meet the requirements of the fully disaggregated data centers. In this paper, different levels of function disaggregation are investigated. For the fully disaggregated data centers, two architectural options are presented, where optical interconnects are necessary for CPU-memory communications. We review the state-of-the-art optical transmission technologies and carry out performance assessment when employing them to support function disaggregation in data centers. The results reveal that function disaggregation does improve the efficiency of resource usage in the data centers, although the bandwidth provided by the state-of-the-art optical transmission technologies is not always sufficient for the fully disaggregated data centers. It calls for research in optical transmission to fully utilize the advantages of function disaggregation in data centers.

  • 5.
    Lin, Rui
    et al.
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab). Huazhong University of Science and Technology, China.
    Cheng, Yuxin
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Tang, M.
    Liu, D.
    Chen, Jiajia
    KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Physical-layer network coding for passive optical interconnects in datacenter networks2017In: 2017 19th International Conference on Transparent Optical Networks (ICTON), IEEE Computer Society, 2017Conference paper (Refereed)
    Abstract [en]

    We introduce physical-layer network coding for a passive optical interconnect architecture in datacenter networks. Results reveal that half of the wavelengths can be saved to obtain latency in the magnitude of microseconds.

  • 6.
    Lin, Rui
    et al.
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Lu, Yang
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, SE-16425 Kista, Sweden..
    Tang, Ming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Liu, Deming
    Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Hubei, Peoples R China..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    First Experimental Demonstration of Physical-Layer Network Coding in PAM4 System for Passive Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    We propose to implement physical-layer network coding (PLNC) in coupler-based passive optical interconnects. The PLNC over PAM4 system is for the first time experimentally validated, where simultaneous mutual communications can be kept within the same wavelength channel, doubling spectrum efficiency.

  • 7.
    Lu, Yang
    et al.
    KTH.
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    KTH.
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Matrix Receiving Scheme Supporting Arbitrary Multiple-Wavelength Reception for Optical Interconnects2017In: 43RD EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2017), IEEE , 2017Conference paper (Refereed)
    Abstract [en]

    An arbitrary multiple-wavelength reception scheme using only a few fixed-wavelength filters is proposed for optical interconnects. Filter matrices design based on error-control coding theory is devised. The feasibility of the proposed scheme is demonstrated in a four-wavelength reception experiment.

  • 8.
    Lu, Yang
    et al.
    Hangzhou Dianzi Univ, Coll Commun Engn, Hangzhou, Zhejiang, Peoples R China..
    Agrell, Erik
    Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden..
    Pang, Xiaodan
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab). RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Ozolins, Oskars
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Hong, Xuezhi
    South China Normal Univ, ZJU SCNU Joint Res Ctr Photon, Guangzhou 510006, Guangdong, Peoples R China..
    Lin, Rui
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Cheng, Yuxin
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Udalcovs, Aleksejs
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Popov, Sergei
    KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.
    Jacobsen, Gunnar
    RISE Acreo AB, Networking & Transmiss Lab, Kista, Sweden..
    Chen, Jiajia
    KTH, School of Electrical Engineering and Computer Science (EECS), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
    Multi-channel collision-free reception for optical interconnects2018In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, no 10, p. 13214-13222Article in journal (Refereed)
    Abstract [en]

    A multi channel reception scheme that allows each node to receive an arbitrary set of wavelengths simultaneously (i.e., collision-free) is proposed for optical interconnects. The proposed scheme only needs to use a few receivers and fixed-wavelength filters that are designed based on error-control coding theory. Experiments with up to four channel collision-free reception units are carried out to demonstrate the feasibility of the proposed scheme.

  • 9.
    Wosinska, Lena
    et al.
    KTH.
    Lin, Rui
    KTH.
    Cheng, Yuxin
    KTH.
    Chen, Jiajia
    KTH.
    Optical Network Architectures and Technologies for Datacenters2017In: 2017 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), IEEE , 2017, p. 111-112, article id 8012675Conference paper (Refereed)
    Abstract [en]

    The paper highlights the challenges related to the increasing importance of datacenter services, leading to dramatically growing datacenter traffic. The advantages of using photonic technology in intra-datacenter networks are discussed and a cross-layer view for network architecture design is presented.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf