Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kasiuliene, Alfreda
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Peat Coated with Iron Oxides: Purification of Metal(loid)-Contaminated Water and Treatment of the Spent Adsorbent2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In Sweden due to the industrial activities, such as wood impregnation, multiple point sources of arsenic (As) contamination in soil and water bodies are scattered over the country. Metals, such as chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), cadmium (Cd) or zinc (Zn) at varying concentrations are usually present as well. Since adsorption is a common method to purify contaminated water, research and development of adsorbents have been actively carried out in the last few decades. However, seldom spent sorbent is safely handled afterwards and often end up in landfill, thus creating new problems and posing new risks to humans and environment.

    The aim of this study was to develop a waste-based adsorbent for simultaneous removal of As and associated metals: Cr, Cu and Zn, and to analyse sustainable ways how to manage the spent adsorbent without creating secondary pollution.

    In the model system two well-establish adsorbents: Fe oxides (deriving from FeCl3) and peat (waste-based), were combined and the concept of simultaneous removal of cationic and anionic contaminants was tested in a batch adsorption experiment. Due to Fe coating, removal of As and Cr increased by 80% and 30%, respectively, as compared to non-coated peat. Removal of Cu and Zn was higher (up to 15%) on non-coated peat than on Fe-coated peat. Similar results were obtained in the up-scaled column adsorption experiment, where Fe salt was substituted with a waste-based Fe hydrosol. Within the same pH environment (pH=5), Fe-coated peat effectively adsorbed all four investigated contaminants (As, Cr, Cu and Zn). Non-coated peat was effective for Cr, Cu and Zn. While, Fe oxides (coated on sand) adsorbed only As.

    Three management strategies for spent adsorbents, obtained after column adsorption experiment, were investigated in this study. i) Long-term deposit in a landfill was simulated by exposing spent adsorbents to a reducing environment and evaluating metal(loid) leaching. Leaching of As increased manifold (up to 60% in a 200-day experiment) as compared to the standardized batch leaching experiment under oxidizing conditions. It was determined that about one third of As(V) was reduced to As(III), which is more mobile and toxic. ii) Valorisation of the spent adsorbent was attempted through hydrothermal carbonisation. It was expected that obtained hydrochar could be used as a beneficial soil amendment. However, treatment resulted in the process liquid and the hydrochar both having high loads of As, Cu and Zn. Additional treatment of process water and hydrochar imply higher management costs for spent adsorbents. iii) Possibility of thermal destruction was investigated by combusting spent adsorbents. After the treatment volume of the waste (ash) was by 80-85% smaller as compared to spent adsorbents. Combustion at higher temperature (1100 °C vs 850 °C) resulted into a weaker metal(loid) leaching from ashes. Furthermore, co-combustion with calcium (Ca)-rich lime (waste-based) decreased leaching of all four investigated elements, Cr in particular, below the limit values for waste being accepted at landfills for hazardous waste. Therefore, combustion enabled possibility of safe and long-term deposit of As-bearing ashes. At the same time, less As would be circulating in society. 

    For the future work, studies that could broaden the spectrum of contaminants targeted by Fe-coated peat would be beneficial. At the same time it is important not only to find alternative utilisation methods for Fe-coated peat, but also investigate other management options for the spent adsorbents.

  • 2.
    Kasiuliene, Alfreda
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Cabante, Ivan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Sefidari, Hamid
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Öhman, Marcus
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Science.
    Bhattacharya, Prosun
    KTH Royal Institute of Technology, Department of Sustainable Development, Environmental Science and Engineering, Division of Water and Environmental Engineering.
    Kumpiene, Jurate
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Leaching of metal(loid)s from ashes of spent sorbent and stabilization effect of calcium-rich additiveManuscript (preprint) (Other academic)
  • 3.
    Kasiuliene, Alfreda
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Carabante, Ivan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Bhattacharya, Prosun
    Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology, Stockholm.
    Kumpiene, Jurate
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Hydrothermal carbonisation of peat-based spent sorbents loaded with metal(loid)s2019In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 23, p. 23730-23738Article in journal (Refereed)
    Abstract [en]

    Hydrothermal carbonisation (HTC) is a wet and relatively low-temperature process where, under autogenous pressures, biomass undergoes a chain of reactions leading to the defragmentation of organic matter. As well as its other uses (e.g. for producing low-cost carbon-based nano-compounds), HTC is utilised for the treatment of wet wastes, such as manure and biosludge. This study aimed to determine if hydrothermal carbonisation is a feasible treatment method for spent sorbents that are highly enriched with arsenic, chromium, copper, and zinc. The chemical properties of hydrochar and process liquid were evaluated after HTC treatment, where peat-based spent sorbents were carbonised at 230 °C for 3 h. Analysis of Fourier transform-infrared spectra revealed that during HTC, the oxygenated bonds of ethers, esters, and carboxylic groups were cleaved, and low-molecular-weight organic fragments were dissolved in the process liquid. A large fraction of arsenic (up to 62%), copper (up to 25%), and zinc (up to 36%) were transferred from the solids into the process water. Leaching of these elements from the hydrochars increased significantly in comparison with the spent sorbents.

  • 4.
    Kasiuliene, Alfreda
    et al.
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Carabante, Ivan
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Bhattacharya, Prosun
    KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. Royal Inst Technol, Dept Sustainable Dev Environm Sci & Engn, Tekn Ringen 76, SE-10044 Stockholm, Sweden..
    Kumpiene, Jurate
    Lulea Univ Technol, Dept Civil Environm & Nat Resources Engn, SE-97187 Lulea, Sweden..
    Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?2019In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 21, p. 21425-21436Article in journal (Refereed)
    Abstract [en]

    This study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent. Iron-sand was effective only for adsorbing As, but Cr, Cu, and Zn were poorly adsorbed. Only iron-peat showed the simultaneous removal of all tested metal (loid)s. Metal (loid) leaching from the spent sorbent at reducing conditions as means to assess the behaviour of the spent sorbent if landfilled was also evaluated. For this purpose, a standardised batch leaching test and leaching experiment at reducing conditions were conducted using the spent sorbent. It was found that oxidising conditions, which prevailed during the standardised batch leaching test, could have led to an underestimation of redox-sensitive As leaching. Substantially higher amounts of As were leached out from the spent sorbents at reducing atmosphere compared with oxidising one. Furthermore, reducing environment caused As(V) to be reduced into the more-toxic As (III).

  • 5.
    Kasiuliene, Alfreda
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Carabante, Ivan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Bhattacharya, Prosun
    Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology, Stockholm.
    Kumpiene, Jurate
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Treatment of metal (loid) contaminated solutions using iron-peat as sorbent: is landfilling a suitable management option for the spent sorbent?2019In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 21, p. 21425-21436Article in journal (Refereed)
    Abstract [en]

    This study firstly aimed to investigate the potential of simultaneous metal (loid) removal from metal (oid) solution through adsorption on iron-peat, where the sorbent was made from peat and Fe by-products. Up-flow columns filled with the prepared sorbent were used to treat water contaminated with As, Cu, Cr, and Zn. Peat effectively adsorbed Cr, Cu, and Zn, whereas approximately 50% of inlet As was detected in the eluent. Iron-sand was effective only for adsorbing As, but Cr, Cu, and Zn were poorly adsorbed. Only iron-peat showed the simultaneous removal of all tested metal (loid)s. Metal (loid) leaching from the spent sorbent at reducing conditions as means to assess the behaviour of the spent sorbent if landfilled was also evaluated. For this purpose, a standardised batch leaching test and leaching experiment at reducing conditions were conducted using the spent sorbent. It was found that oxidising conditions, which prevailed during the standardised batch leaching test, could have led to an underestimation of redox-sensitive As leaching. Substantially higher amounts of As were leached out from the spent sorbents at reducing atmosphere compared with oxidising one. Furthermore, reducing environment caused As(V) to be reduced into the more-toxic As (III).

  • 6.
    Kasiuliene, Alfroda
    et al.
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Carabante, Ivan
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Bhattacharya, Prosun
    Department of Sustainable Development, Environmental Science and Engineering, Royal Institute of Technology.
    Carporale, A.G.
    Department of Agricultural Sciences, University of Naples Federico II.
    Adamo, P.
    Department of Agricultural Sciences, University of Naples Federico II.
    Kumpiene, Jurate
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Removal of metal(oid)s from contaminated water using iron-coated peat sorbent2018In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 198, p. 290-296Article in journal (Refereed)
    Abstract [en]

    This study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5. Coating of Fe on peat significantly increased the adsorption of As (from <5% to 80%) and Cr (from <3% to 25%) in comparison to uncoated peat. Removal of cations on coated peat slightly decreased (by 10–15%), yet remained within acceptable range. Electron Microscopy combined with X-Ray Energy Dispersive Spectroscopy revealed that iron coating on the peat was rather homogenous and As and Cr were abundantly adsorbed on the surface. By contrast, Cu and Zn displayed a sparing distribution on the surface of the iron coated peat. These results indicate that iron-peat simultaneously target sufficient amounts of both cations and anions and can be used for a one-step treatment of contaminated groundwater

  • 7.
    Tian, Shuangshuang
    et al.
    College of Resources and Environment, Huazhong Agricultural University, Wuhan.
    Tan, Zhongxin
    College of Resources and Environment, Huazhong Agricultural University, Wuhan.
    Kasiuliene, Alfreda
    Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Geosciences and Environmental Engineering.
    Ai, Ping
    College of Engineering, Huazhong Agricultural University, Wuhan.
    Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil2017In: Chinese Journal of Chemical Engineering, ISSN 1004-9541, E-ISSN 2210-321X, Vol. 25, no 4, p. 477-486Article in journal (Refereed)
    Abstract [en]

    Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil, thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar pH, mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached: (1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers; (2) 350 °C is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and (3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf