Introduction: Dietary nitrate (NO3-) supplementation serves as an exogenous source of nitrite (NO3-) and nitric oxide (NO) through the NO3- NO3- NO pathway, and may improve vascular functions during normoxia. The effects of NO3- supplementation in healthy lowlanders during hypobaric hypoxia are unknown. Purpose: Determine the effect of acute oral NO3- supplementation via beetroot juice (BJ) on endothelial function (flow mediated dilation; FMD) in lowlanders at 3700 m. Methods: FMD was measured using ultrasound and Doppler in the brachial artery of 11 healthy subjects (4 females, age 25 +/- 5 yrs; height 1.8 +/- 0.1 m, weight 72 +/- 10 kg) sojourning to high altitude. In a randomized, double-blinded crossover study design, FMD was measured 3 h after drinking BJ (5.0 mmol NO3-) and placebo (PL; 0.003 mmol No-3(-)) supplementation at 3700 m, with a 24-h wash out period between tests. FMD was also measured without any BJ supplementation pre-trek at 1370 m, after 5 days at 4200 m and upon return to 1370 m after 4 weeks of altitude exposure (above 2500 m). The altitude exposure was interrupted by a decent to lower altitude where subjects spent two nights at 1370 m before returning to altitude again. Results: Ten subjects completed the NO3- supplementation. FMD (mean +/- SD) pre-trek value was 6.53 +/- 2.32% at 1370 m. At 3700 m FMD was reduced to 3.84 +/- 1.31% (p < 0.01) after PL supplementation but was normalized after receiving BJ (5.77 +/- 1.14% (p = 1.00). Eight of the subjects completed the interrupted 4-week altitude stay, and their FMD was lower at 4200 m (FMD 3.04 +/- 2.22%) and at post-altitude exposure to 1370 m (FMD 3.91 +/- 2.58%) compared to pre-trek FMD at 1370 m. Conclusion: Acute dietary NO3- supplementation may abolish altitude-induced reduction in endothelial function, and can serve as a dietary strategy to ensure peripheral vascular function in lowland subjects entering high altitude environments. (C) 2015 Elsevier Inc. All rights reserved.
Purpose: The aim of the present paper was to study preferences for web based self-administered questionnaires (web SAQs) vs. paper-based self-administered questionnaires (paper SAQs) and to evaluate the feasibility of using web SAQs in patients referred to cardiac, lung, occupational and cancer rehabilitation programs. Methods: The patients were approached by mail and given the choice to answer the compulsory SAQs either on paper or on a web-based platform. Results: Hundred and twenty seven out of 183 eligible patients (69.3%) were willing to participate and 126 completed the study. Web SAQs were preferred by 77.7%, and these patients were significantly younger, more often cohabiting and tended to have higher level of education than paper SAQ users. Mean number of data missing per patient was less among the web SAQ users than the paper SAQ users (0.55 vs. 2.15, p <0.001). Costs related to human resources were estimated to be 60% lower with web SAQs compared to paper SAQs. Conclusions: Web SAQs were well accepted among the patients scheduled for rehabilitation, led to less missing data and considerable cost savings related to human resources. Patients referred to rehabilitation should be offered the choice to complete self-administered questionnaires on internet platforms when internet access is common and available.
Acute dietary nitrate (NO3-) supplementation has been reported to lower resting blood pressure, reduce the oxygen (O-2) cost of sub-maximal exercise, and improve exercise tolerance. Given the proposed effects of NO3- on tissue oxygenation and metabolic rate, it is possible that NO3- supplementation might enhance the duration of resting apnea. If so, this might have important applications both in medicine and sport. We investigated the effects of acute NO3- supplementation on pre-apnea blood pressure, apneic duration, and the heart rate (HR) and arterial O-2 saturation (SaO(2)) responses to sub-maximal and maximal apneas in twelve well-trained apnea divers. Subjects were assigned in a randomized, double blind, crossover design to receive 70 ml of beetroot juice (BR; containing similar to 5.0 mmol of nitrate) and placebo juice (PL; similar to 0.003 mmol of nitrate) treatments. At 2.5 h post-ingestion, the subjects completed a series of two 2-min (sub-maximal) static apneas separated by 3 min of rest, followed by a maximal effort apnea. Relative to PL, BR reduced resting mean arterial pressure by 2% (PL: 86 +/- 7 vs. BR: 84 +/- 6 mmHg; P = 0.04). The mean nadir for SaO(2) after the two sub-maximal apneas was 97.2 +/- 1.6% in PL and 98.5 +/- 0.9% in BR (P = 0.03) while the reduction in HR from baseline was not significantly different between PL and BR. Importantly, BR increased maximal apneic duration by 11% (PL: 250 +/- 58 vs. BR: 278 +/- 64 s; P = 0.04). In the longer maximal apneas in BR, the magnitude of the reductions in HR and SaO(2) were greater than in PL (P <= 0.05). The results suggest that acute dietary NO3- supplementation may increase apneic duration by reducing metabolic costs. (c) 2012 Elsevier B.V. All rights reserved.
Release of stored red blood cells resulting from spleen contraction improves human performance in various hypoxic situations. This study determined spleen volume resulting from two contraction-evoking stimuli: breath holding and exercise before and after altitude acclimatization during a Mount Everest ascent (8848m). Eight climbers performed the following protocol before and after the climb: 5min ambient air respiration at 1370m during rest, 20min oxygen respiration, 20min ambient air respiration at 1370m, three maximal-effort breath holds spaced by 2min, 10min ambient air respiration, 5min of cycling at 100 W, and finally 10min ambient air respiration. We measured spleen volume by ultrasound and capillary hemoglobin (HB) concentration after each exposure, and heart rate (HR) and arterial oxygen saturation (Sao2) continuously. Mean (SD) baseline spleen volume was unchanged at 213 (101) mL before and 206 (52) mL after the climb. Before the climb, spleen volume was reduced to 184 (83) mL after three breath holds, and after the climb three breath holds resulted in a spleen volume of 132 (26) mL (p=0.032). After exercise, the preclimb spleen volume was 186 (89) mL vs. 112 (389) mL) after the climb (p=0.003). Breath hold duration and cardiovascular responses were unchanged after the climb. We concluded that spleen contraction may be enhanced by altitude acclimatization, probably reflecting both the acclimatization to chronic hypoxic exposure and acute hypoxia during physical work. © Copyright 2014, Mary Ann Liebert, Inc. 2014.
Three potentially protective responses to hypoxia have been reported to be enhanced in divers: (1) the diving response, (2) the blood-boosting spleen contraction, and (3) a long-term enhancement of hemoglobin concentration (Hb). Longitudinal studies, however, have been lacking except concerning the diving response. Ten untrained subjects followed a 2-week training program with 10 maximal effort apneas per day, with pre- and posttraining measurements during three maximal duration apneas, and an additional post-training series when the apneic duration was kept identical to that before training. Cardiorespiratory parameters and venous blood samples were collected across tests, and spleen diameters were measured via ultrasound imaging. Maximal apneic duration increased by 44 s (P < 0.05). Diving bradycardia developed 3 s earlier and was more pronounced after training (P < 0.05). Spleen contraction during apneas was similar during all tests. The arterial hemoglobin desaturation (SaO(2)) nadir after apnea was 84% pretraining and 89% after the duration-mimicked apneas post-training (P < 0.05), while it was 72% (P < 0.05) after maximal apneas post-training. Baseline Hb remained unchanged after training, but reticulocyte count increased by 15% (P < 0.05). We concluded that the attenuated SaO(2) decrease during mimic apneas was due mainly to the earlier and more pronounced diving bradycardia, as no enhancement of spleen contraction or Hb had occurred. Increased reticulocyte count suggests augmented erythropoiesis.
Patrician, Alexander, Harald Engan, David Lundsten, Ludger Grote, Helena Vigetun-Haughey, and Erika Schagatay. The effect of dietary nitrate on nocturnal sleep-disordered breathing and arterial oxygen desaturation at high altitude. High Alt Med Biol 00:000-000, 2017.Sleep-disordered breathing and fluctuations in arterial oxygen saturation (SaO(2)) are common during sleep among lowlanders ascending to high altitude. Dietary nitrate (NO3-) supplementation has been shown to lower the O-2 consumption in various conditions. Our objective was to investigate whether dietary NO3- could reduce sleep-disordered breathing and SaO(2) desaturation during sleep at altitude. Cardiorespiratory responses during sleep were measured in 10 healthy lowlanders at 330m and then again in the Himalayas at 3700-4900m. Each subject received two 70mL shots of either beetroot juice (BR; approximate to 5.0mmol NO3- per shot) or placebo (PL: approximate to 0.003mmol NO3- per shot) in a single-blinded, weighted order over two consecutive nights at altitude. At 2.5-4.5 hours into sleep at altitude, BR increased the SaO(2) desaturation drop (4.2 [0.1]% with PL vs. 5.3 [0.4]% with BR; p=0.024) and decreased the SaO(2) desaturation duration (14.1 [0.9] seconds with PL to 11.1 [0.9] seconds with BR; p=0.0.041). There was a reduction in breaths with flow limitation (p=0.025), but no changes in Apnea-Hypopnea Index (AHI), mean and minimum SaO(2). The study suggests BR supplementation does not improve AHI or oxygenation, but may increase fluctuations in arterial O-2 saturation during sleep at altitude in native lowlanders.
BACKGROUND:
Splenic contraction associated with apnea causes increased haemoglobin concentration and haematocrit (Hct), an effect that may promote prolonged breath-holding. Hypoxia has been shown to augment this effect, but hypercapnic influences have not been investigated previously.
METHODS:
Eight non-divers performed three series of apneas on separate days after inspiration of oxygen with different carbon dioxide (CO₂) levels. Each series consisted of three apneas 2 minutes apart: one with pre-breathing of 5% CO₂ in oxygen (O₂, 'Hypercapnia'); one with pre-breathing of 100% O₂ ('Normocapnia'); and one with hyperventilation of 100% O₂ ('Hypocapnia'). The apnea durations were repeated identically in all trials, determined from the maximum duration attained in the CO₂ trial. A fourth trial, breathing 5% CO₂ in O₂ for the same duration as these apneas was also performed ('Eupneic hypercapnia'). In three subjects, spleen size was measured using ultrasonic imaging.
RESULTS:
Haemoglobin increased by 4% after apneas in the 'Hypercapnia' trial (P = 0.002) and by 3% in the 'Normocapnia' trial (P = 0.011), while the 'Hypocapnia' and 'Eupneic hypercapnia' trials showed no changes. The 'easy' phase of apnea, i.e., the period without involuntary breathing movements, was longest in the 'Hypocapnia' trial and shortest in the 'Hypercapnia' trial. A decrease in spleen size was evident in the hypercapnic trial, whereas in the hypocapnia trial spleen size increased, while only minor changes occurred in the other trials. No differences were observed between trials in the cardiovascular diving response.
CONCLUSION:
There appears to be a dose-response effect of CO₂ on triggering splenic contraction during apnea in the absence of hypoxia.
A number of competitive water sports are performed while breath-holding (apnea). Such performances put large demands on the anaerobic system, but the study of lactate accumulation in apneic sports is limited. We therefore aimed to determine and compare the net lactate accumulation (NLA) during competition events in six disciplines of competitive freediving (FD) and three disciplines of synchronized swimming (SSW). The FD disciplines were: static apnea (STA; n = 14) dynamic apnea (DYN; n = 19) dynamic apnea no fins (DNF; n = 16) constant weight (CWT; n = 12) constant weight no fins (CNF; n = 8) free immersion (FIM; n =10) The SSW disciplines were solo (n = 21), duet (n = 31) and team (n = 34). Capillary blood lactate concentration was measured before and three minutes after competition performances, and apneic duration and performance variables were recorded. In all nine disciplines NLA was observed. The highest mean (SD) NLA (mmol.L-1) was found in CNF at 6.3 (2.2), followed by CWT at 5.9 (2.3) and SSW solo at 5 (1.9). STA showed the lowest NLA 0.7 (0.7) mmol.L-1 compared to all other disciplines (P < 0.001). The NLA recorded shows that sports involving apnea involve high levels of anaerobic activity. The highest NLA was related to both work done by large muscle groups and long apneic periods, suggesting that NLA is influenced by both the type of work and apnea duration, with lower NLA in SSW due to shorter apneic episodes with intermittent breathing.
The blood-boosting spleen contraction represents a potential protective response to hypoxia by raising the blood gas storage capacity. Human spleen contraction has been observed during exercise, apnea and simulated altitude resulting in ejection of stored red blood cells into circulation. High-altitude exposure has been shown to increase spleen contraction suggesting that long-term hypoxia may improve the response in humans. Subjects with COPD are often exposed to hypoxia, which limits their physical performance. However, it is not known if spleen contraction occurs in subjects with COPD. Our aim was to reveal whether subjects with COPD recruit the spleen erythrocyte reserve during mild exercise.
Methods
SpO2, spleen volume and Hb were measured before and after 6 min walking test (6MWT) in 24 subjects with COPD. Results were analyzed for all subjects pooled and for subject groups with resting SpO2 above and below 90 % separated and expressed as mean.
Results
6MWT reduced SpO2 from 91 to 83 % and spleen volume from 254 to 181 mL, while Hb increased from 150 to 154 g/L (p = 0.001 for all). Compared to subjects with SpO2 > 90 %, the group with SpO2 < 90 % displayed the largest resting spleen volume (339 vs 202 mL; p = 0.001) and the most pronounced spleen volume reduction (139 vs 40 mL; p = 0.007).
Conclusion
Exercise with hypoxia evokes spleen contraction in subjects with COPD and may represent a protective response during periods of hypoxia. The larger spleen volume and more pronounced contraction in the most hypoxic subjects may suggest long-term adaptation to hypoxia.
INTRODUCTION: Ingesting nitrate-rich beetroot juice (BJ) has been suggested to enhance physical performance by reducing the oxygen cost, which could be useful in apneic diving. We previously found that after ingestion of BJ, arterial oxygen saturation was higher after static apneas (Engan et.al, Resp. Physiol & Neurobiol, 2012) and after dynamic apneas involving exercise (Patrician & Schagatay. Scand.J.Med.Sci.Sports, 2016). Our aim was to investigate the effect of BJ ingestion on spleen contraction and the resulting Hb increase, a mechanism known to prolong apneas (Schagatay et.al, J.Appl.Physiol, 2001).
MATERIALS AND METHODS: Eight volunteers aged 24±2 years simulated diving by performing maximal apneas with face immersion during prone rest ~2.5h after ingesting 70 ml BJ (5 mmol NO3-) or placebo (0.003 mmol NO3-) on separate days in a weighted order. We measured spleen diameters for volume calculation and capillary Hb before and after "dives".
RESULTS: Baseline (mean±SE) spleen volume was 269±33 mL with placebo and 206±27 mL after BJ ingestion (P<0.05). Post "dive" spleen volumes were smaller, but similar at 168±35 mL and 193±25 mL, respectively (NS). Baseline Hb was 145.4±3.4 g/L with placebo and 149.8±2.6 g/L with BJ (P<0.05). Post "dive" Hb had increased to 152.0±4.8 g/L with placebo and 153.7±3.0 g/L with BJ (NS).
CONCLUSION: With BJ ingestion spleen volume was reduced and Hb elevated even before the "dive". The elevated Hb at the start of apnea would likely have a positive effect on apneic duration by enhancing circulating oxygen stores. The positive effect of nitrate on performance in various sports could in part be due to its spleen-emptying effect, causing a natural blood boosting, which is a novel finding.