Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bondza, Sina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Uppsala.
    Björkelund, Hanna
    Ridgeview Instruments AB, Uppsala.
    Nestor, Marika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Uppsala.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Uppsala.
    Novel Real-Time Proximity Assay for Characterizing Multiple Receptor Interactions on Living Cells2017In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 89, no 24, p. 13212-13218Article in journal (Refereed)
    Abstract [en]

    Cellular receptor activity is often controlled through complex mechanisms involving interactions with multiple molecules, which can be soluble ligands and/or other cell surface molecules. In this study, we combine a fluorescence-based technology for real-time interaction analysis with fluorescence quenching to create a novel time-resolved proximity assay to study protein-receptor interactions on living cells. This assay extracts the binding kinetics and affinity for two proteins if they bind in proximity on the cell surface. One application of real-time proximity interaction analysis is to study relative levels of receptor dimerization. The method was primarily evaluated using the HER2 binding antibodies Trastuzumab and Pertuzumab and two EGFR binding antibodies including Cetuximab. Using Cetuximab and Trastuzumab, proximity of EGFR and HER2 was investigated before and after treatment of cells with the tyrosine-kinase inhibitor Gefitinib. Treated cells displayed 50% increased proximity signal, whereas the binding characteristics of the two antibodies were not significantly affected, implying an increase in the EGFR-HER2 dimer level. These results demonstrate that real-time proximity interaction analysis enables determination of the interaction rate constants and affinity of two ligands while simultaneously quantifying their relative colocalization on living cells.

  • 2.
    Bondza, Sina
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Vange, Sweden.
    Foy, Eleanor
    Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England..
    Brooks, Jonathan
    Pfizer Inc, Cambridge, MA USA..
    Andersson, Karl
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Vange, Sweden.
    Robinson, James
    Univ Leeds, Leeds Inst Rheumat & Musculoskeletal Med, Leeds, W Yorkshire, England..
    Richalet, Pascale
    BioRevera LLC, Arlington, MA USA..
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Ridgeview Instruments AB, Vange, Sweden.
    Real-time Characterization of Antibody Binding to Receptors on Living Immune Cells2017In: Frontiers in Immunology, ISSN 1664-3224, E-ISSN 1664-3224, Vol. 8, article id 455Article in journal (Refereed)
    Abstract [en]

    Understanding molecular interactions on immune cells is crucial for drug development to treat cancer and autoimmune diseases. When characterizing molecular interactions, the use of a relevant living model system is important, as processes such as receptor oligomerization and clustering can influence binding patterns. We developed a protocol to enable time-resolved analysis of ligand binding to receptors on living suspension cells. Different suspension cell lines and weakly adhering cells were tethered to Petri dishes with the help of a biomolecular anchor molecule, and antibody binding was analyzed using LigandTracer. The protocol and assay described in this report were used to characterize interactions involving eight cell lines. Experiments were successfully conducted in three different laboratories, demonstrating the robustness of the protocol. For various antibodies, affinities and kinetic rate constants were obtained for binding to CD20 on both Daudi and Ramos B-cells, the T-cell co-receptor CD3 on Jurkat cells, and the Fc gamma receptor CD32 on transfected HEK293 cells, respectively. Analyzing the binding of Rituximab to B-cells resulted in an affinity of 0.7-0.9 nM, which is similar to values reported previously for living B-cells. However, we observed a heterogeneous behavior for Rituximab interacting with B-cells, which to our knowledge has not been described previously. The understanding of complex interactions will be facilitated with the possibility to characterize binding processes in real-time on living immune cells. This provides the chance to broaden the understanding of how binding kinetics relate to biological function.

  • 3.
    Brechmann, Nils A.
    et al.
    AdBIOPRO, VINNOVA Competence Ctr Adv Bioprod Continuous Pro, Stockholm, Sweden;KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Ind Biotechnol, Cell Technol Grp CETEG, Stockholm, Sweden.
    Eriksson, Per-Olov
    PE Bioproc Consulting AB, Strangnas, Sweden.
    Eriksson, Kristofer
    AdBIOPRO, VINNOVA Competence Ctr Adv Bioprod Continuous Pro, Stockholm, Sweden;Lab On A Bead AB, Uppsala, Sweden.
    Oscarsson, Sven
    Stockholm Univ, Dept Organ Chem, Stockholm, Sweden.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Shokri, Atefeh
    AdBIOPRO, VINNOVA Competence Ctr Adv Bioprod Continuous Pro, Stockholm, Sweden;KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Ind Biotechnol, Cell Technol Grp CETEG, Stockholm, Sweden.
    Hjalm, Goran
    AdBIOPRO, VINNOVA Competence Ctr Adv Bioprod Continuous Pro, Stockholm, Sweden;Lab On A Bead AB, Uppsala, Sweden.
    Chotteau, Veronique
    AdBIOPRO, VINNOVA Competence Ctr Adv Bioprod Continuous Pro, Stockholm, Sweden;KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Ind Biotechnol, Cell Technol Grp CETEG, Stockholm, Sweden.
    Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture2019In: Biotechnology progress (Print), ISSN 8756-7938, E-ISSN 1520-6033, Vol. 35, no 3, article id e2775Article in journal (Refereed)
    Abstract [en]

    High capacity magnetic protein A agarose beads, LOABeads PrtA, were used in the development of a new process for affinity purification of monoclonal antibodies (mAbs) from non-clarified CHO cell broth using a pilot-scale magnetic separator. The LOABeads had a maximum binding capacity of 65 mg/mL and an adsorption capacity of 25-42 mg IgG/mL bead in suspension for an IgG concentration of 1 to 8 g/L. Pilot-scale separation was initially tested in a mAb capture step from 26 L clarified harvest. Small-scale experiments showed that similar mAb adsorptions were obtained in cell broth containing 40 x 10(6) cells/mL as in clarified supernatant. Two pilot-scale purification runs were then performed on non-clarified cell broth from fed-batch runs of 16 L, where a rapid mAb adsorption >= 96.6% was observed after 1 h. This process using 1 L of magnetic beads had an overall mAb yield of 86% and 16 times concentration factor. After this single protein A capture step, the mAb purity was similar to the one obtained by column chromatography, while the host cell protein content was very low, <10 ppm. Our results showed that this magnetic bead mAb purification process, using a dedicated pilot-scale separation device, was a highly efficient single step, which directly connected the culture to the downstream process without cell clarification. Purification of mAb directly from non-clarified cell broth without cell separation can provide significant savings in terms of resources, operation time, and equipment, compared to legacy procedure of cell separation followed by column chromatography step. (c) 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2775, 2019.

  • 4.
    Deyev, Sergey
    et al.
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia;Natl Res Tomsk Polytech Univ, Tomsk, Russia;Natl Res Nucl Univ MEPhI, Inst Engn Phys Biomed PhysBio, Bionanophoton Lab, Moscow, Russia.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Schulga, Alexey
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Proshkina, Galina
    Russian Acad Sci, Shemyakin & Ovchinnikov Inst Bioorgan Chem, Mol Immunol Lab, Moscow, Russia.
    Guler, Rezan
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Chernov, Vladimir
    Russian Acad Sci, Canc Res Inst, Nucl Med Dept, Tomsk Natl Res Med Ctr, Tomsk, Russia.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Science for Life Laboratory, SciLifeLab. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Comparative Evaluation of Two DARPin Variants: Effect of Affinity, Size, and Label on Tumor Targeting Properties2019In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 16, no 3, p. 995-1008Article in journal (Refereed)
    Abstract [en]

    Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins that can be selected for binding to desirable molecular targets. High affinity and small size of DARPins render them promising probes for radionuclide molecular imaging. However, detailed knowledge on many factors influencing their imaging properties is still lacking. We have evaluated two human epidermal growth factor 2 (HER2)-specific DARPins with different size and binding properties. DARPins 9_29-H-6 and G3-H-6 were radiolabeled with iodine-125 and tricarbonyl technetium-99m and evaluated in vitro. A side-by-side comparison of biodistribution and tumor targeting was performed. HER2-specific tumor accumulation of G3-H-6 was demonstrated. A combination of smaller size and higher affinity resulted in a higher tumor uptake of G3-H-6 in comparison to 9_29-H6. Technetium-99m labeled G3-H-6 demonstrated a better biodistribution profile than 9_29-H-6, with several-fold lower uptake in liver. Radioiodinated G3-H-6 showed the best tumor-to-organ ratios. The combined effect of affinity, molecular weight, scaffold composition, and nonresidualizing properties of iodine label provided radioiodinated G3-H-6 with high clinical potential for imaging of HER2.

  • 5.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Andersson, Ken G.
    KTH Royal Inst Technol, Dept Prot Technol.
    Dam, Johan H.
    Odense Univ Hosp, Dept Nucl Med.
    Olsen, Birgitte B.
    Odense Univ Hosp, Dept Nucl Med..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Ståhl, Stefan
    KTH Royal Inst Technol, Dept Prot Technol.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Technol.
    Thisgaard, Helge
    Odense Univ Hosp, Dept Nucl Med.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 5961Article in journal (Refereed)
    Abstract [en]

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The In-111-labelled DOTA-conjugated Z(EGFR:2377) Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z(EGFR:2377). DOTA-Z(EGFR:2377) was labelled with Co-57 (T-1/2 = 271.8 d), Co-55 (T-1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide Ga-68 (T-1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope Co-57 was used in animal studies. Both Co-57-DOTA-Z(EGFR:2377) and Ga-68-DOTA-Z(EGFR:2377) demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z(EGFR:2377) were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, Co-57-DOTA-Z(EGFR:2377) demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for (68)GaDOTA-Z(EGFR:2377). The results of this study suggest that the positron-emitting cobalt isotope 55Co would be an optimal label for DOTA-Z(EGFR:2377) and further development should concentrate on this radionuclide as a label.

  • 6.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, K.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Frejd, Fredrik Y.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala Univ, Uppsala, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Evaluation of Affibody Molecules for Radionuclide Imaging of Carbonic Abhydrase IX Expression In Vivo2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S428-S428Article in journal (Refereed)
  • 7.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Borin, Jesper
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    von Witting, Emma
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 37-48Article in journal (Refereed)
    Abstract [en]

    ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)(2)- (DiADAPT6L2), and -(SSSG)(3)- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with In-111 and I-125, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.

  • 8.
    Garousi, Javad
    et al.
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Lindbo, Sarah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Borin, Jesper
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    von Witting, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Vorobyeva, Anzhelika
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Oroujeni, Maryam
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Mitran, Bogdan
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Buijs, Jos
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, SE-75185 Uppsala, Sweden..
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.
    Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 37-48Article in journal (Refereed)
    Abstract [en]

    ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)(2)- (DiADAPT6L2), and -(SSSG)(3)- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with In-111 and I-125, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.

  • 9.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    KTH Royal Inst Technol, Sch Biotechnol, Div Prot Technol, Stockholm, Sweden..
    Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m2017In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, article id 14780Article in journal (Refereed)
    Abstract [en]

    ABD-Derived Affinity Proteins (ADAPTs) is a novel class of engineered scaffold proteins derived from an albumin-binding domain of protein G. The use of ADAPT6 derivatives as targeting moiety have provided excellent preclinical radionuclide imaging of human epidermal growth factor 2 (HER2) tumor xenografts. Previous studies have demonstrated that selection of nuclide and chelator for its conjugation has an appreciable effect on imaging properties of scaffold proteins. In this study we performed a comparative evaluation of the anti-HER2 ADAPT having an aspartate-glutamate-alanine-valine-aspartate-alanine-asparagine-serine (DEAVDANS) N-terminal sequence and labeled at C-terminus with (99)mTc using a cysteine-containing peptide based chelator, glycine-serine-serine-cysteine (GSSC), and a similar variant labeled with In-111 using a maleimido derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Both (99)mTc-DEAVDANS-ADAPT6-GSSC and In-111-DEAVDANS-ADAPT6-GSSC-DOTA accumulated specifically in HER2-expressing SKOV3 xenografts. The tumor uptake of both variants did not differ significantly and average values were in the range of 19-21% ID/g. However, there was an appreciable variation in uptake of conjugates in normal tissues that resulted in a notable difference in the tumor-to-organ ratios. The In-111-DOTA label provided 2-6 fold higher tumor-to-organ ratios than (99)mTc-GSSC and is therefore the preferable label for ADAPTs.

  • 10.
    Honarvar, Hadis
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Calce, Enrica
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Doti, Nunzianna
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Langella, Emma
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    D'Amato, Valentina
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Bianco, Roberto
    Univ Naples Federico II, Dept Clin Med & Surg, Naples, Italy..
    Saviano, Michele
    CNR, Inst Crystallog, Bari, Italy..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    De Luca, Stefania
    CNR, Inst Biostruct & Bioimaging, Naples, Italy..
    Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 2998Article in journal (Refereed)
    Abstract [en]

    HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. In-111-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.

  • 11.
    Lindbo, Sarah
    et al.
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Hober, Sofia
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Radionuclide tumor targeting using ADAPT scaffold proteins: aspects of label positioning and residualizing properties of the label2018In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 1, p. 93-99Article in journal (Refereed)
    Abstract [en]

    Visualization of cancer-associated alterations of molecular phenotype using radionuclide imaging is a noninvasive approach to stratifying patients for targeted therapies. The engineered albumin-binding domain-derived affinity protein (ADAPT) is a promising tracer for radionuclide molecular imaging because of its small size (6.5 kDa), which satisfies the precondition for efficient tumor penetration and rapid clearance. Previous studies demonstrated that the human epidermal growth factor receptor type 2 (HER2)-targeting ADAPT6 labeled with radiometals at the N terminus is able to image HER2 expression in xenografts a few hours after injection. The aim of this study was to evaluate whether the use of a non-residualizing label or placement of the labels at the C terminus would further improve the targeting properties of ADAPT6. Methods: Two constructs, Cys(2)-ADAPT6 and Cys(59)-ADAPT6, having the (HE)(3)DANS sequence at the N terminus were produced and site-specifically labeled using In-111-DOTA or I-125-iodo-((4-hydroxyphenyl) ethyl) maleimide (HPEM). The conjugates were compared in vitro and in vivo. HER2-targeting properties and biodistribution were evaluated in BALB/C nu/nu mice bearing ovarian carcinoma cell (SKOV-3) xenografts. Results: Specific HER2 binding and high affinity were preserved after labeling. Both Cys(2)-ADAPT6 and Cys59-ADAPT6 were internalized slowly by HER2-expressing cancer cells. Depending on the label position, uptake at 4 h after injection varied from 10% to 22% of the injected dose per gram of tumor tissue. Regardless of terminus position, the I-125-HPEM label provided more than 140-fold lower renal uptake than the In-111-DOTA label at 4 after injection. The tumor-to-organ ratios were, in contrast, higher for both of the (111)InDOTA- labeled ADAPT variants in other organs. Tumor-to-blood ratios for In-111-labeled Cys(2)-ADAPT6 and Cys(59)-ADAPT6 did not differ significantly (250-280), but In-111-DOTA-Cys(59)-ADAPT6 provided significantly higher tumor-to-lung, tumor-to-liver, tumor-to-spleen, and tumor-to-muscle ratios. Radioiodinated variants had similar tumor-to-organ ratios, but I-125-HPEM-Cys(59)-ADAPT6 had significantly higher tumor uptake and a higher tumor-to-kidney ratio. Conclusion: Residualizing properties of the label strongly influence the targeting properties of ADAPT6. The position of the radiolabel influences targeting as well, although to a lesser extent. Placement of a label at the C terminus yields the best biodistribution features for both radiometal and radiohalogen labels. Low renal retention of the radioiodine label creates a precondition for radionuclide therapy using I-131-labeled HPEM-Cys(59)-ADAPT6.

  • 12.
    Meyer, Saskia
    et al.
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Evers, Mitchell
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Jansen, Johannes H. M.
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Broek, Blanca
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Reitsma, Stephanie E.
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Moerer, Petra
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Amini, Mojtaba
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Kretschmer, Anna
    Univ Kiel, Div Stem Cell Transplantat & Immunotherapy, Dept Internal Med 2, Kiel, Germany..
    ten Broeke, Toine
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    den Hartog, Marcel T.
    Bioceros, Utrecht, Netherlands..
    Rijke, Mark
    Bioceros, Utrecht, Netherlands..
    Klein, Christian
    Roche Innovat Ctr, Roche Pharma Res & Early Dev, Zurich, Switzerland..
    Valerius, Thomas
    Univ Kiel, Div Stem Cell Transplantat & Immunotherapy, Dept Internal Med 2, Kiel, Germany..
    Boross, Peter
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    Leusen, Jeanette H. W.
    UMC Utrecht, Lab Translat Immunol, Utrecht, Netherlands..
    New insights in Type I and II CD20 antibody mechanisms-of-action with a panel of novel CD20 antibodies2018In: British Journal of Haematology, ISSN 0007-1048, E-ISSN 1365-2141, Vol. 180, no 6, p. 808-820Article in journal (Refereed)
    Abstract [en]

    Based on their mechanisms-of-action, CD20 monoclonal antibodies (mAbs) are grouped into Type I [complement-dependent cytotoxicity (CDC) and antibody-dependent cell-mediated cytotoxicity (ADCC)] and Type II [programmed cell death (PCD) and ADCC] mAbs. We generated 17 new hybridomas producing CD20 mAbs of different isotypes and determined unique heavy and light chain sequence pairs for 13 of them. We studied their epitope binding, binding kinetics and structural properties and investigated their predictive value for effector functions, i.e. PCD, CDC and ADCC. Peptide mapping and CD20 mutant screens revealed that 10 out of these 11 new mAbs have an overlapping epitope with the prototypic Type I mAb rituximab, albeit that distinct amino acids of the CD20 molecule contributed differently. Binding kinetics did not correlate with the striking differences in CDC activity among the mIgG2c mAbs. Interestingly, chimerization of mAb m1 resulted in a mAb displaying both Type I and II characteristics. PCD induction was lost upon introduction of a mutation in the framework of the heavy chain affecting the elbow angle, supporting that structural changes within this region can affect functional activities of CD20 mAbs. Together, these new CD20 mAbs provide further insights in the properties dictating the functional efficacy of CD20 mAbs.

  • 13.
    Nordling, Sofia
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Brännström, Johan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Carlsson, Fredrik
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Lu, Bo
    St Vincents Hosp Melbourne, Immunol Res Ctr, Melbourne, Vic, Australia.
    Salvaris, Evelyn
    St Vincents Hosp Melbourne, Immunol Res Ctr, Melbourne, Vic, Australia.
    Wanders, Alkwin
    Umea Univ, Dept Med Biosci, Umea, Sweden.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Estrada, Sergio
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Cowan, Peter J.
    Univ Melbourne, St Vincents Hosp Melbourne, Immunol Res Ctr, Melbourne, Vic, Australia;Univ Melbourne, Dept Med, Melbourne, Vic, Australia.
    Lorant, Tomas
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Transplantation Surgery.
    Magnusson, Peetra U.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology.
    Enhanced protection of the renal vascular endothelium improves early outcome in kidney transplantation: Preclinical investigations in pig and mouse2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 5220Article in journal (Refereed)
    Abstract [en]

    Ischemia reperfusion injury is one of the major complications responsible for delayed graft function in kidney transplantation. Applications to reduce reperfusion injury are essential due to the widespread use of kidneys from deceased organ donors where the risk for delayed graft function is especially prominent. We have recently shown that coating of inflamed or damaged endothelial cells with a unique heparin conjugate reduces thrombosis and leukocyte recruitment. In this study we evaluated the binding capacity of the heparin conjugate to cultured human endothelial cells, to kidneys from brain-dead porcine donors, and to murine kidneys during static cold storage. The heparin conjugate was able to stably bind cultured endothelial cells with high avidity, and to the renal vasculature of explanted kidneys from pigs and mice. Treatment of murine kidneys prior to transplantation reduced platelet deposition and leukocyte infiltration 24 hours post-transplantation, and significantly improved graft function. The present study thus shows the benefits of enhanced protection of the renal vasculature during cold storage, whereby increasing the antithrombotic and anti-adhesive properties of the vascular endothelium yields improved renal function early after transplantation.

  • 14.
    Regula, Naresh Kumar
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Honarvar, Hadis
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Lubberink, Mark
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. Uppsala University Hospital.
    Jorulf, Håkan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Ladjevardi, Sam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Häggman, Michael
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Urology.
    Antoni, Gunnar
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Velikyan, Irina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
    Sörensen, Jens
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology. PET Centre, Uppsala University Hospital.
    Carbon Flux as a Measure of Prostate Cancer Aggressiveness: [11C]-Acetate PET/CT2020In: International Journal of Medical Sciences, ISSN 1449-1907, E-ISSN 1449-1907, Vol. 17, no 2, p. 214-223Article in journal (Refereed)
    Abstract [en]

    Purpose: Dynamic [11C]-acetate positron emission tomography (PET) can be used to study tissue perfusion and carbon flux simultaneously. In this study, the feasibility of the quantification of prostate cancer aggressiveness using parametric methods assessing [11C]-acetate kinetics was investigated in prostate cancer subjects. The underlying uptake mechanism correlated with [11C]-acetate influx and efflux measured in real-time in vitro in cell culture.

    Methods: Twenty-one patients with newly diagnosed low-to-moderate risk prostate cancer underwent magnetic resonance imaging (MRI) and dynamic [11C]-acetate PET/CT examinations of the pelvis. Parametric images of K1 (extraction × perfusion), k2 (oxidative metabolism) and VT (=K1/k2, anabolic metabolism defined as carbon retention) were constructed using a one-tissue compartment model with an arterial input function derived from pelvic arteries. Regions of interest (ROIs) of the largest cancer lesion in each patient and normal prostate tissue were drawn using information from MRI (T2 and DWI images), biopsy results, and post-surgical histopathology of whole prostate sections (n=7). In vitro kinetics of [11C]-acetate were studied on DU145 and PC3 cell lines using LigandTracer® White equipment for the measurement of the radioactivity uptake in real-time at 37°C.

    Results: Mean prostate specific antigen (PSA) was 8.33±3.92 ng/mL and median Gleason Sum 6 (range 5-7). K1, VT and standardized uptake values (SUVs) were significantly higher in cancerous prostate tissues compared to normal ones for all patients (p<0.001), while k2 was not (p=0.26). PSA values correlated to early SUVs (r=0.50, p=0.02) and K1 (r=0.48, p=0.03). Early and late SUVs correlated to VT (r>0.76, p<0.001) and K1 (r>0.64, p<0.005). In vitro studies demonstrated higher extraction and retention (p<0.01) of [11C]-acetate in the more aggressive PC3 cells.

    Conclusion: Parametric images could be used to visualize the [11C]-acetate kinetics of the prostate cancer exhibiting elevated extraction associated with the cancer aggressiveness. The influx rate of [11C]-acetate studied in cell culture also showed dependence on the cancer aggressiveness associated with elevated lipogenesis. Dynamic [11C]-acetate/PET demonstrated potential for prostate cancer aggressiveness estimation using parametric-based K1 and VT values.

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf