Endre søk
Begrens søket
1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Ahmed, Muhammad Rehan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Compliance Control of Robot Manipulator for Safe Physical Human Robot Interaction2011Doktoravhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    Inspiration from biological systems suggests that robots should demonstrate same level of capabilities that are embedded in biological systems in performing safe and successful interaction with the humans. The major challenge in physical human robot interaction tasks in anthropic environment is the safe sharing of robot work space such that robot will not cause harm or injury to the human under any operating condition.

    Embedding human like adaptable compliance characteristics into robot manipulators can provide safe physical human robot interaction in constrained motion tasks. In robotics, this property can be achieved by using active, passive and semi active compliant actuation devices. Traditional methods of active and passive compliance lead to complex control systems and complex mechanical design.

    In this thesis we present compliant robot manipulator system with semi active compliant device having magneto rheological fluid based actuation mechanism. Human like adaptable compliance is achieved by controlling the properties of the magneto rheological fluid inside joint actuator. This method offers high operational accuracy, intrinsic safety and high absorption to impacts. Safety is assured by mechanism design rather than by conventional approach based on advance control. Control schemes for implementing adaptable compliance are implemented in parallel with the robot motion control that brings much simple interaction control strategy compared to other methods.

    Here we address two main issues: human robot collision safety and robot motion performance.We present existing human robot collision safety standards and evaluate the proposed actuation mechanism on the basis of static and dynamic collision tests. Static collision safety analysis is based on Yamada’s safety criterion and the adaptable compliance control scheme keeps the robot in the safe region of operation. For the dynamic collision safety analysis, Yamada’s impact force criterion and head injury criterion are employed. Experimental results validate the effectiveness of our solution. In addition, the results with head injury criterion showed the need to investigate human bio-mechanics in more details in order to acquire adequate knowledge for estimating the injury severity index for robots interacting with humans.

    We analyzed the robot motion performance in several physical human robot interaction tasks. Three interaction scenarios are studied to simulate human robot physical contact in direct and inadvertent contact situations. Respective control disciplines for the joint actuators are designed and implemented with much simplified adaptable compliance control scheme.

    The series of experimental tests in direct and inadvertent contact situations validate our solution of implementing human like adaptable compliance during robot motion and prove the safe interaction with humans in anthropic domains.

  • 2.
    Ahmed, Muhammad Rehan
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Semi-active compliant robot enabling collision safety for human robot interaction2010Inngår i: 2010 International Conference on Mechatronics and Automation (ICMA), IEEE, 2010, s. 1932-1937Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Human robot interaction (HRI) tasks requires robots to have safe sharing of work space and to demonstrate adaptable compliant behavior enabling eminent collision safety as well as maintaining high position accuracy. Robot compliance control normally can be achieved by using active compliance control of actuators based on various sensor data. Alternatively, passive devices allow controllable compliance motion but usually are mechanically complex. We proposed a unique method using semi-active compliant actuation mechanism having magneto-rheological (MR) fluid based actuator that introduces reconfigurable compliance characteristics into the robot joints. This enables high intrinsic safety coming from fluid mechanics as well as, it offers simpler interaction control strategy compared to other concurrent approaches. In this studies, we have described three essential modes of motions required for physical human system interaction. Furthermore, we have demonstrated robot collision safety in terms of static collision and experimentally validates the performance of robot manipulator enabling safe human robot interaction.

  • 3.
    Ahmed, Muhammad Rehan
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Static and dynamic collisionsafety for human robot interaction using magneto-rheological fluid based compliant robot manipulator2010Inngår i: IEEE international conference on robotics and biomimetics (ROBIO), 2010, IEEE conference proceedings, 2010, s. 370-375Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The success of human robot interaction (HRI) tasks is characterized by evaluating robot performance in terms of collision safety and position accuracy. Hence, both position accuracy and collision safety are equally indispensable. HRI refers to cognitive as well as physical interaction. Cognitive human robot interaction based on perception and awareness where as physical human robot interaction demands direct contact with the humans exhibiting adaptable compliant behavior. Therefore, development of ideal safe robot manipulator having adaptable compliant actuation is inevitable. Adaptable compliance can be achieved by using active compliant actuation requiring various sensor data or by using passive compliant devices with high mechanical complexity. We present magneto rheological fluid based compliant actuation mechanism introducing adaptable compliance directly into robotic joint with much simpler interaction control and higher intrinsic safety originating from fluid mechanics. In this study, we have discussed adaptable compliance in terms of essential modes of motion for safe physical HRI and evaluated the safety performance of our robot for static collision testing and dynamic collision testing based on impact force and head injury criterion. Finally, the experimental results validate the significance of our proposed method for both human robot collision safety and high position accuracy.

  • 4.
    Ahmed, Muhammad Rehan
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Static collision analysis of semi active compliant robot for safe human robot interaction2010Inngår i: Proceedings of the 12th Mechatronics Forum Biennial International Conference, IWF Institute of Machine tools and manufacturing , 2010, s. 220-227Konferansepaper (Fagfellevurdert)
  • 5.
    Ahmed, Muhammad Rehan
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Two link compliant robot manipulator for physical human robot collision safety2012Inngår i: Biomedical Engineering Systems and Technologies / [ed] Ana Fred, Joaquim Filipe, Hugo Gamboa, Springer, 2012Konferansepaper (Fagfellevurdert)
  • 6.
    Ahmed, Rehan M.
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Ananiev, Anani V.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Compliant motion control for safe human robot interaction2009Inngår i: Robot motion and control 2009 / [ed] Krzysztof R. Kozłowski, Berlin: Springer , 2009, s. 265-274Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Robots have recently been foreseen to work side by side and share workspace with humans in assisting them in tasks that include physical human-robot (HR) interaction. The physical contact with human tasks under uncertainty has to be performed in a stable and safe manner [6]. However, current industrial robot manipulators are still very far from HR coexisting environments, because of their unreliable safety, rigidity and heavy structure. Besides this, the industrial norms separate the two spaces occupied by a human and a robot by means of physical fence or wall [9]. Therefore, the success of such physical HR interaction is possible if the robot is enabled to handle this interaction in a smart way to prevent injuries and damages.

  • 7.
    Ahmed, Rehan M.
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Ananiev, Anani V.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan G.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Safe robot with reconfigurable compliance/stiffness actuation2009Inngår i: Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. ReMAR'2009 / [ed] J. S. Dai, M. Zoppi, X. W. Kong, IEEE, 2009, s. 633-638Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Human robot interaction (HRI) in constrained motion tasks requires robots to have safe sharing of work space and to demonstrate adaptable compliant behavior Compliance control of industrial robots, normally can be achieved by using active compliance control of actuators based on various sensor data. Alternatively, passive devices allow controllable compliance motion but usually are mechanically complex. We present a unique method using a novel actuation mechanism based on magneto-rheological fluid (MRF) that incorporates reconfigurable compliance directly into the robot joints. This brings much simple interaction control strategy compared to other antagonistic methods. In this studies, we have described three essential modes of motions required for physical human system interaction. Then we have discussed their respective control disciplines. Finally, we have presented functional performance of reconfigurable MRF actuation mechanism in constrained motion tasks by simulating various HRI scenarios.

  • 8.
    Ahmed, Rehan M.
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Kalaykov, Ivan
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Ananiev, Anani
    Örebro universitet, Akademin för naturvetenskap och teknik.
    Modeling of magneto rheological fluid actuator enabling safe human-robot interaction2008Inngår i: IEEE International Conference on Emerging Technologies and Factory Automation, 2008. ETFA 2008, 2008, s. 974-979Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Impedance control and compliant behavior for safe human-robot physical interaction of industrial robots normally can be achieved by using active compliance control of actuators based on various sensor data. Alternatively, passive devices allow controllable compliance motion but usually are mechanically complex. We present another approach using a novel actuation mechanism based on magneto-rheological fluid (MRF) that incorporates variable stiffness directly into the joints. In this paper, we have investigated and analyzed principle characteristics of MRF actuation mechanism and presented the analytical-model. Then we have developed the static and dynamic model based on experimental test results and have discussed three essential modes of motion needed for human-robot manipulation interactive tasks.

1 - 8 of 8
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf