Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Ken G.
    et al.
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Ståhl, Stefan
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Löfblom, John
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR: 2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator2016In: International journal of oncology, ISSN 1791-2423, Vol. 49, no 6, p. 2285-2293Article in journal (Refereed)
    Abstract [en]

    The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo.

  • 2.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, S.
    Royal Inst Technol, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Hober, S.
    Royal Inst Technol, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Selection of the most optimal ADAPT6-based probe for imaging of HER2 using PET and SPECT2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, p. S77-S78Article in journal (Other academic)
  • 3.
    Garousi, Javad
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Borin, Jesper
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    von Witting, Emma
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Buijs, Jos
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Hober, Sophia
    KTH Royal Inst Technol, Dept Prot Technol, SE-10691 Stockholm, Sweden.
    Comparative evaluation of dimeric and monomeric forms of ADAPT scaffold protein for targeting of HER2-expressing tumours2019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 134, p. 37-48Article in journal (Refereed)
    Abstract [en]

    ADAPTs are small engineered non-immunoglobulin scaffold proteins, which have demonstrated very promising features as vectors for radionuclide tumour targeting. Radionuclide imaging of human epidermal growth factor 2 (HER2) expression in vivo might be used for stratification of patients for HER2-targeting therapies. ADAPT6, which specifically binds to HER2, has earlier been shown to have very promising features for in vivo targeting of HER2 expressing tumours. In this study we tested the hypothesis that dimerization of ADAPT6 would increase the apparent affinity to HER2 and accordingly improve tumour targeting. To find an optimal molecular design of dimers, a series of ADAPT dimers with different linkers, -SSSG- (DiADAPT6L1), -(SSSG)(2)- (DiADAPT6L2), and -(SSSG)(3)- (DiADAPT6L3) was evaluated. Dimers in combination with optimal linker lengths demonstrated increased apparent affinity to HER2. The best variants, DiADAPT6L2 and DiADAPT6L3 were site-specifically labelled with In-111 and I-125, and compared with a monomeric ADAPT6 in mice bearing HER2-expressing tumours. Despite higher affinity, both dimers had lower tumour uptake and lower tumour-to-organ ratios compared to the monomer. We conclude that improved affinity of a dimeric form of ADAPT does not compensate the disadvantage of increased size. Therefore, increase of affinity should be obtained by affinity maturation and not by dimerization.

  • 4.
    Lindbo, Sarah
    et al.
    School of Engineering in Chemistry, Biotechnology and Health (CBH), Division of Protein Science, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Hober, Sophia
    School of Engineering in Chemistry, Biotechnology and Health (CBH), Division of Protein Science, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Optimized Molecular Design of ADAPT-Based HER2-Imaging Probes Labeled with 111In and 68Ga2018In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 15, no 7, p. 2674-2683Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging is a promising tool for visualization of cancer associated molecular abnormalities in vivo and stratification of patients for specific therapies. ADAPT is a new type of small engineered proteins based on the scaffold of an albumin binding domain of protein G. ADAPTs have been utilized to select and develop high affinity binders to different proteinaceous targets. ADAPT6 binds to human epidermal growth factor 2 (HER2) with low nanomolar affinity and can be used for its in vivo visualization. Molecular design of 111In-labeled anti-HER2 ADAPT has been optimized in several earlier studies. In this study, we made a direct comparison of two of the most promising variants, having either a DEAVDANS or a (HE)3DANS sequence at the N-terminus, conjugated with a maleimido derivative of DOTA to a GSSC amino acids sequence at the C-terminus. The variants (designated DOTA-C59-DEAVDANS-ADAPT6-GSSC and DOTA-C61-(HE)3DANS-ADAPT6-GSSC) were stably labeled with 111In for SPECT and 68Ga for PET. Biodistribution of labeled ADAPT variants was evaluated in nude mice bearing human tumor xenografts with different levels of HER2 expression. Both variants enabled clear discrimination between tumors with high and low levels of HER2 expression. 111In-labeled ADAPT6 derivatives provided higher tumor-to-organ ratios compared to 68Ga-labeled counterparts. The best performing variant was DOTA-C61-(HE)3DANS-ADAPT6-GSSC, which provided tumor-to-blood ratios of 208 ± 36 and 109 ± 17 at 3 h for 111In and 68Ga labels, respectively.

  • 5.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Abouzayed, Ayman
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Lundmark, Fanny
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Rosenström, Ulrika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preparative Medicinal Chemistry.
    Evaluation of Tumor-Targeting Properties of an Antagonistic Bombesin Analogue RM26 Conjugated with a Non-Residualizing Radioiodine Label Comparison with a Radiometal-Labelled Counterpart2019In: Pharmaceutics, ISSN 1999-4923, E-ISSN 1999-4923, Vol. 11, no 8, article id 380Article in journal (Refereed)
    Abstract [en]

    Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized. To test this hypothesis, tyrosine was conjugated via diethylene glycol linker to N-terminus of an antagonistic bombesin analogue RM26 to form Tyr-PEG(2)-RM26. [In-111]In-DOTA-PEG(2)-RM26 was used as a control with a residualizing label. Tyr-PEG(2)-RM26 was labelled with I-125 with 95% radiochemical purity and retained binding specificity to GRPR. The IC50 values for Tyr-PEG(2)-RM26 and DOTA-PEG(2)-RM26 were 1.7 +/- 0.3 nM and 3.3 +/- 0.5 nM, respectively. The cellular processing of [I-125]I-Tyr-PEG(2)-RM26 by PC-3 cells showed unusually fast internalization. Biodistribution showed that uptake in pancreas and tumour was GRPR-specific for both radioconjugates. Blood clearance of [I-125]I-Tyr-PEG(2)-RM26 was appreciably slower and activity accumulation in all organs was significantly higher than for [In-111]In-DOTA-PEG(2)-RM26. Tumor uptake of [In-111]In-DOTA-PEG(2)-RM26 was significantly higher than for [I-125]I-Tyr-PEG(2)-RM26, resulting in higher tumour-to-organ ratio for [In-111]In-DOTA-PEG(2)-RM26 at studied time points. Incorporation of amino acids with hydrophilic side-chains next to tyrosine might overcome the problems associated with the use of tyrosine as a prosthetic group for radioiodination.

  • 6.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Anderson, K. G.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Steinhardt, X.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Ståhl, S.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Löfblom, J.
    KTH Royal Inst Technol, Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Influence of composition of cysteine-containing peptide based chelators on biodistribution of Tc-99m-labelled anti-EGFR affibody molecules2017In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 44, p. S347-S348Article in journal (Other academic)
  • 7.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, K.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, J.
    KTH Royal Inst Technol, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Imaging of EGFR Expression Using 99mTC-Labelled ZEGFR:2377 Affibody Molecule2016In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 43, p. S238-S238Article in journal (Refereed)
  • 8.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Steinhardt, Xenia
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules2018In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 50, no 8, p. 981-994Article in journal (Refereed)
    Abstract [en]

    Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of Tc-99m, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The Tc-99m-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.

  • 9.
    Oroujeni, Maryam
    et al.
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Andersson, Ken G.
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Steinhardt, Xenia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.
    Altai, Mohamed
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Orlova, Anna
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Mitran, Bogdan
    Uppsala Univ, Dept Med Chem, Uppsala, Sweden..
    Vorobyeva, Anzhelika
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Garousi, Javad
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Tolmachev, Vladimir
    Uppsala Univ, Dept Immunol Genet & Pathol, S-75181 Uppsala, Sweden..
    Löfblom, John
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.
    Influence of composition of cysteine-containing peptide-based chelators on biodistribution of Tc-99m-labeled anti-EGFR affibody molecules2018In: Amino Acids, ISSN 0939-4451, E-ISSN 1438-2199, Vol. 50, no 8, p. 981-994Article in journal (Refereed)
    Abstract [en]

    Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of Tc-99m, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The Tc-99m-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.

  • 10.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, K.
    Royal Inst Technol, Stockholm, Sweden.
    Löfblom, J.
    Royal Inst Technol, Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science. Uppsala Univ, Uppsala, Sweden.
    Comparative evaluation of anti-EFGR affibody molecules labelled with gallium-68 and zirconium-89 using desferrioxamine B as a chelator2018In: European Journal of Nuclear Medicine and Molecular Imaging, ISSN 1619-7070, E-ISSN 1619-7089, Vol. 45, no Supplement 1, p. S674-S675Article in journal (Other academic)
  • 11.
    Oroujeni, Maryam
    et al.
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Andersson, Ken G.
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Lofblom, John
    KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Science for Life Laboratory, SciLifeLab.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Preclinical Evaluation of [Ga-68]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors2018In: CELLS, E-ISSN 2073-4409, Vol. 7, no 9, article id 141Article in journal (Refereed)
    Abstract [en]

    Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide Ga-68. Stability, specificity of binding to EGFR-expressing cells, and processing of [Ga-68]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [Ga-68]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [Zr-89]Zr-DFO-ZEGFR:2377. DFO-ZEGFR:2377 was efficiently (isolated yield of 73 +/- 3%) and stably labeled with Ga-68. Binding of [Ga-68]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [Ga-68]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [Zr-89]Zr-DFO-ZEGFR:2377, [Ga-68]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [Ga-68]Ga-DFO-ZEGFR:2377. In conclusion, [Ga-68]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.

  • 12.
    Oroujeni, Maryam
    et al.
    Institute for Advanced Studies in Basic Sciences, Dept Chem, Zanjan 4513766731, Iran.
    Kaboudin, Babak
    Institute for Advanced Studies in Basic Sciences, Dept Chem, Zanjan 4513766731, Iran.
    Xia, Wei
    Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Applied Materials Sciences.
    Jönsson, Petra
    Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
    Ossipov, Dmitri A.
    Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Polymer Chemistry.
    Conjugation of cyclodextrin to magnetic Fe3O4 nanoparticles via polydopamine coating for drug delivery2018In: Progress in organic coatings, ISSN 0300-9440, E-ISSN 1873-331X, Vol. 114, p. 154-161Article in journal (Refereed)
    Abstract [en]

    Abstract

    In this study, a novel magnetic nanocarrier for hydrophobic drugs (β-CD–PDA–MNPs) was fabricated using surface coating of Fe3O4 nanoparticles with polydopamine (PDA) followed by functionalization with 6-thio-β-cyclodextrin (6-thio-β-CD). The obtained magnetic nanoparticles were employed to investigate their interactions with diclofenac (DCF) as a model hydrophobic drug. The resulting β-CD–PDA–MNPs were characterized by various methods including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The newly fabricated magnetic nanocarrier exhibited considerably higher drug loading capacity as compared for its analogue lacking CD ligands. Moreover, the release profile of DCF from β-CD–PDA–MNPs showed a burst release during the initial 8 h followed by the drug sustained release. Facile coating of magnetic nanoparticles with PDA was therefore a robust synthetic procedure for the conversion of the nanoparticles into a drug vehicle.

  • 13.
    Summer, D
    et al.
    Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Andersson, K. G.
    Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, J.n
    Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Decristoforo, C
    Department of Nuclear Medicine, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
    PP15 89Zr-Siderophore-Affibody conjugates for imaging EGFR expression2018In: EJNMMI Research, ISSN 2191-219X, E-ISSN 2191-219X, Vol. 8, no S1, article id 5Article in journal (Other academic)
    Abstract [en]

    Aim: Zirconium-89 has gained great interest for PET, when imaging at late time points is required. Desferrioxamine B (DFO), is mostly used for this radionuclide as bifunctional chelator (BFC) and we recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study reports on the comparison of FSC and DFO as BFCs for 89Zr labelling of the affibody ZEGFR:2377 targeting Epidermal Growth Factor Receptors (EGFR).

    Methods: FSC-ZEGFR:2377 and DFO-ZEGFR:2377 were evaluated regarding labeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution and microPET-CT imaging.

    Results: Both conjugates showed increased labelling yields at elevated temperature (85°C). Both conjugates revealed remarkable specificity, affinity and slow cell-line dependent internalisation. Labeling at 85°C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake but clear improvement as compared to 89Zr-DFO-ZEGFR:2377, labeled at room temperature, which was confirmed by MicroPET-CT imaging.

    Conclusion: We were able to show that FSC is a suitable alternative to DFO for labeling of biomolecules with zirconium-89. Furthermore our findings indicate that 89Zr- labeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.

  • 14.
    Summer, Dominik
    et al.
    Med Univ Innsbruck, Dept Nucl Med, Anichstr 35, A-6020 Innsbruck, Austria..
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Andersson, Ken G.
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden..
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Löfblom, John
    KTH Royal Inst Technol, Div Prot Technol, SE-10691 Stockholm, Sweden..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Division of Molecular Imaging.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Decristoforo, Clemens
    Med Univ Innsbruck, Dept Nucl Med, Anichstr 35, A-6020 Innsbruck, Austria..
    Cyclic versus Noncyclic Chelating Scaffold for Zr-89-Labeled ZEGFR:2377 Affibody Bioconjugates Targeting Epidermal Growth Factor Receptor Overexpression2018In: Molecular Pharmaceutics, ISSN 1543-8384, E-ISSN 1543-8392, Vol. 15, no 1, p. 175-185Article in journal (Refereed)
    Abstract [en]

    Zirconium-89 is an emerging radionuclide for positron emission tomography (PET) especially for biomolecules with slow e pharmacokinetics as due to its longer half-life, in comparison to fluorine 18 and gallium-68, imaging at late time points is feasible. Desferrioxamine B (DFO), a linear bifunctional chelator (BFC) is mostly used for this radionuclide so far but shows limitations regarding stability. Our group recently reported on fusarinine C (FSC) with similar zirconium-89 complexing properties but potentially higher stability related to its cyclic structure. This study was designed to compare FSC and DFO head-to head as bifunctional chelators for "Zr-radiolabeled EGFR-targeting ZEGFR:2377 affibody bioconjugates. FSC-ZEGFR:2377 and DFOZEGFR:2377 were evaluated regarding radiolabeling, in vitro stability, specificity, cell uptake, receptor affinity, biodistribution, and microPET-CT imaging. Both conjugates were efficiently labeled with zirconium-89 at room temperature but radiochemical yields increased substantially at elevated temperature, 85 degrees C. Both 89Zr-FSC-ZEGFR:2377 and Zr-89-DFO-ZEGFR:2377 revealed remarkable specificity, affinity and slow cell-line dependent internalization. Radiolabeling at 85 degrees C showed comparable results in A431 tumor xenografted mice with minor differences regarding blood clearance, tumor and liver uptake. In comparison 89ZrDFO-ZEGFR:2377, radiolabeled at room temperature, showed a significant difference regarding tumor-to-organ ratios. MicroPET-CT imaging studies of Zr-89-FSC-ZEGFR:2377 as well as Zr-89-DFO-ZEGFR:2377 confirmed these findings. In summary we were able to show that FSC is a suitable alternative to DFO for radiolabeling of biomolecules with zirconium-89. Furthermore, our findings indicate that Zr-89-radiolabeling of DFO conjugates at higher temperature reduces off-chelate binding leading to significantly improved tumor-to-organ ratios and therefore enhancing image contrast.

  • 15.
    von Witting, Emma
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Garousi, Javad
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Lindbo, Sarah
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Vorobyeva, Anzhelika
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Hober, Sophia
    KTH Royal Inst Technol, Dept Prot Sci, SE-10691 Stockholm, Sweden.
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Selection of the optimal macrocyclic chelators for labeling with 111In and 68Ga improves contrast of HER2 imaging using engineered scaffold protein ADAPT62019In: European journal of pharmaceutics and biopharmaceutics, ISSN 0939-6411, E-ISSN 1873-3441, Vol. 140, p. 109-120Article in journal (Refereed)
    Abstract [en]

    Radionuclide molecular imaging is a promising tool that becomes increasingly important as targeted cancer therapies are developed. To ensure an effective treatment, a molecular stratification of the cancer is a necessity. To accomplish this, visualization of cancer associated molecular abnormalities in vivo by molecular imaging is the method of choice. ADAPTs, a novel type of small protein scaffold, have been utilized to select and develop high affinity binders to different proteinaceous targets. One of these binders, ADAPT6 selectively interacts with human epidermal growth factor 2 (HER2) with low nanomolar affinity and can therefore be used for its in vivo visualization. Molecular design and optimization of labeled anti-HER2 ADAPT has been explored in several earlier studies, showing that small changes in the scaffold affect the biodistribution of the domain. In this study, we evaluate how the biodistribution properties of ADAPT6 is affected by the commonly used maleimido derivatives of the macrocyclic chelators NOTA, NODAGA, DOTA and DOTAGA with the aim to select the best variants for SPECT and PET imaging. The different conjugates were labeled with 111In for SPECT and 68Ga for PET. The acquired data show that the combination of a radionuclide and a chelator for its conjugation has a strong influence on the uptake of ADAPT6 in normal tissues and thereby gives a significant variation in tumor-toorgan ratios. Hence, it was concluded that the best variant for SPECT imaging is 111In-(HE)3DANS-ADAPT6-GSSC-DOTA while the best variant for PET imaging is 68Ga-(HE)3DANS-ADAPT6-GSSC-NODAGA.

  • 16.
    Westerlund, Kristina
    et al.
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Altai, Mohamed
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mitran, Bogdan
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics.
    Konijnenberg, Mark
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands..
    Oroujeni, Maryam
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Atterby, Christina
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    de Jong, Marion
    Erasmus MC, Dept Radiol & Nucl Med, Rotterdam, Netherlands..
    Orlova, Anna
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Theranostics. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Mattsson, Johanna Sofia Margareta
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Micke, Patrick
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Clinical and experimental pathology.
    Eriksson Karlström, Amelie
    KTH Royal Inst Technol, Dept Prot Sci, Stockholm, Sweden..
    Tolmachev, Vladimir
    Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Medical Radiation Science.
    Radionuclide Therapy of HER2-Expressing Human Xenografts Using Affibody-Based Peptide Nucleic Acid-Mediated Pretargeting: In Vivo Proof of Principle2018In: Journal of Nuclear Medicine, ISSN 0161-5505, E-ISSN 1535-5667, Vol. 59, no 7, p. 1092-1098Article in journal (Refereed)
    Abstract [en]

    Affibody molecules are small proteins engineered using a nonanti-body scaffold. Radiolabeled Affibody molecules are excellent imaging probes, but their application to radionuclide therapy has been prevented by high renal reabsorption. The aim of this study was to test the hypothesis that Affibody-based peptide nucleic acid (PNA)-mediated pretargeted therapy of human epidermal growth factor receptor 2 (HER2)-expressing cancer extends survival without accompanying renal toxicity.

    Methods: A HER2-targeting Affibody molecule ligated with an AGTCGTGATGTAGTC PNA hybridization probe (Z(HER2:342)-SR-HP1) was used as the primary pretargeting agent. A complementary AGTCGTGATGTAGTC PNA conjugated to the chelator DOTA and labeled with the radionuclide Lu-177 (Lu-177-HP2) was used as the secondary agent. The influence of different factors on pretargeting was investigated. Experimental radionuclide therapy in mice bearing SKOV-3 xenografts was performed in 6 cycles separated by 7 d.

    Results: Optimal tumor targeting was achieved when 16 MBq/3.5 mu g (0.65 nmol) of Lu-177-HP2 was injected 16 h after injection of 100 mu g (7.7 nmol) of Z(HER2:342)-SR-HP1. The calculated absorbed dose to tumors was 1,075 mGy/MBq, whereas the absorbed dose to kidneys was 206 mGy/MBq and the absorbed dose to blood (surrogate of bone marrow) was 4 mGy/MBq. Survival of mice was significantly longer (P < 0.05) in the treatment group (66 d) than in the control groups treated with the same amount of Z(HER2:342)-SR-HP1 only (37 d), the same amount and activity of Lu-177-HP2 only (32 d), or phosphate-buffered saline (37 d).

    Conclusion: The studied pretargeting system can deliver an absorbed dose to tumors appreciably exceeding absorbed doses to critical organs, making Affibody-based PNA-mediated pretargeted radionuclide therapy highly attractive.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf