Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amouzgar, Kaveh
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Metamodel based multi-objective optimization2015Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    As a result of the increase in accessibility of computational resources and the increase in the power of the computers during the last two decades, designers are able to create computer models to simulate the behavior of a complex products. To address global competitiveness, companies are forced to optimize their designs and products. Optimizing the design needs several runs of computationally expensive simulation models. Therefore, using metamodels as an efficient and sufficiently accurate approximate of the simulation model is necessary. Radial basis functions (RBF) is one of the several metamodeling methods that can be found in the literature.

    The established approach is to add a bias to RBF in order to obtain a robust performance. The a posteriori bias is considered to be unknown at the beginning and it is defined by imposing extra orthogonality constraints. In this thesis, a new approach in constructing RBF with the bias to be set a priori by using the normal equation is proposed. The performance of the suggested approach is compared to the classic RBF with a posteriori bias. Another comprehensive comparison study by including several modeling criteria, such as problem dimension, sampling technique and size of samples is conducted. The studies demonstrate that the suggested approach with a priori bias is in general as good as the performance of RBF with a posteriori bias. Using the a priori RBF, it is clear that the global response is modeled with the bias and that the details are captured with radial basis functions.

    Multi-objective optimization and the approaches used in solving such problems are briefly described in this thesis. One of the methods that proved to be efficient in solving multi-objective optimization problems (MOOP) is the strength Pareto evolutionary algorithm (SPEA2). Multi-objective optimization of a disc brake system of a heavy truck by using SPEA2 and RBF with a priori bias is performed. As a result, the possibility to reduce the weight of the system without extensive compromise in other objectives is found.

    Multi-objective optimization of material model parameters of an adhesive layer with the aim of improving the results of a previous study is implemented. The result of the original study is improved and a clear insight into the nature of the problem is revealed.

  • 2.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Metamodel Based Multi-Objective Optimization with Finite-Element Applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    As a result of the increase in accessibility of computational resources and the increase of computer power during the last two decades, designers are able to create computer models to simulate the behavior of complex products. To address global competitiveness, companies are forced to optimize the design of their products and production processes. Optimizing the design and production very often need several runs of computationally expensive simulation models. Therefore, integrating metamodels, as an efficient and sufficiently accurate approximate of the simulation model, with optimization algorithms is necessary. Furthermore, in most of engineering problems, more than one objective function has to be optimized, leading to multi-objective optimization(MOO). However, the urge to employ metamodels in MOO, i.e., metamodel based MOO (MB-MOO), is more substantial.Radial basis functions (RBF) is one of the most popular metamodeling methods. In this thesis, a new approach to constructing RBF with the bias to beset a priori by using the normal equation is proposed. The performance of the suggested approach is compared to the classic RBF and four other well-known metamodeling methods, in terms of accuracy, efficiency and, most importantly, suitability for integration with MOO evolutionary algorithms. It has been found that the proposed approach is accurate in most of the test functions, and it was the fastest compared to other methods. Additionally, the new approach is the most suitable method for MB-MOO, when integrated with evolutionary algorithms. The proposed approach is integrated with the strength Pareto evolutionary algorithm (SPEA2) and applied to two real-world engineering problems: MB-MOO of the disk brake system of a heavy truck, and the metal cutting process in a turning operation. Thereafter, the Pareto-optimal fronts are obtained and the results are presented. The MB-MOO in both case studies has been found to be an efficient and effective method. To validate the results of the latter MB-MOO case study, a framework for automated finite element (FE) simulation based MOO (SB-MOO) of machining processes is developed and presented by applying it to the same metal cutting process in a turning operation. It has been proved that the framework is effective in achieving the MOO of machining processes based on actual FE simulations.

  • 3.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Andersson, Tobias J.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A framework for simulation based multi-objective optimization and knowledge discovery of machining process2018In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 98, no 9-12, p. 2469-2486Article in journal (Refereed)
  • 4.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Andersson, Tobias J.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Metamodel based multi-objective optimization of a turning process by using finite element simulationArticle in journal (Refereed)
    Abstract [en]

    This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.

  • 5.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Andersson, Tobias
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Metamodel based multi-objective optimization of a turning process by using finite element simulation2019In: Engineering optimization (Print), ISSN 0305-215X, E-ISSN 1029-0273Article in journal (Refereed)
    Abstract [en]

    This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.

  • 6.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Radial basis functions with a priori bias as surrogate models: A comparative study2018In: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 71, p. 28-44Article in journal (Refereed)
    Abstract [en]

    Radial basis functions are augmented with a posteriori bias in order to perform robustly when used as metamodels. Recently, it has been proposed that the bias can simply be set a priori by using the normal equation, i.e., the bias becomes the corresponding regression model. In this study, we demonstrate the performance of the suggested approach (RBFpri) with four other well-known metamodeling methods; Kriging, support vector regression, neural network and multivariate adaptive regression. The performance of the five methods is investigated by a comparative study, using 19 mathematical test functions, with five different degrees of dimensionality and sampling size for each function. The performance is evaluated by root mean squared error representing the accuracy, rank error representing the suitability of metamodels when coupled with evolutionary optimization algorithms, training time representing the efficiency and variation of root mean squared error representing the robustness. Furthermore, a rigorous statistical analysis of performance metrics is performed. The results show that the proposed radial basis function with a priori bias achieved the best performance in most of the experiments in terms of all three metrics. When considering the statistical analysis results, the proposed approach again behaved the best, while Kriging was relatively as accurate and support vector regression was almost as fast as RBFpri. The proposed RBF is proven to be the most suitable method in predicting the ranking among pairs of solutions utilized in evolutionary algorithms. Finally, the comparison study is carried out on a real-world engineering optimization problem.

  • 7.
    Amouzgar, Kaveh
    et al.
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Cenanovic, Mirza
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Salomonsson, Kent
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Multi-objective optimization of material model parameters of an adhesive layer by using SPEA22015In: Advances in structural and multidisciplinary optimization: Proceedings of the 11th World Congress of Structural and Multidisciplinary Optimization (WCSMO-11) / [ed] Qing Li, Grant P Steven, Zhongpu (Leo) Zhang, The International Society for Structural and Multidisciplinary Optimization (ISSMO) , 2015, p. 249-254Conference paper (Refereed)
    Abstract [en]

    The usage of multi material structures in industry, especially in the automotive industry are increasing. To overcome the difficulties in joining these structures, adhesives have several benefits over traditional joining methods. Therefore, accurate simulations of the entire process of fracture including the adhesive layer is crucial. In this paper, material parameters of a previously developed meso mechanical finite element (FE) model of a thin adhesive layer are optimized using the Strength Pareto Evolutionary Algorithm (SPEA2). Objective functions are defined as the error between experimental data and simulation data. The experimental data is provided by previously performed experiments where an adhesive layer was loaded in monotonically increasing peel and shear. Two objective functions are dependent on 9 model parameters (decision variables) in total and are evaluated by running two FEsimulations, one is loading the adhesive layer in peel and the other in shear. The original study converted the two objective functions into one function that resulted in one optimal solution. In this study, however, a Pareto frontis obtained by employing the SPEA2 algorithm. Thus, more insight into the material model, objective functions, optimal solutions and decision space is acquired using the Pareto front. We compare the results and show good agreement with the experimental data.

  • 8.
    Amouzgar, Kaveh
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Rashid, Asim
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Strömberg, Niclas
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Multi-Objective Optimization of a Disc Brake System by using SPEA2 and RBFN2013In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Volume 3B: 39th Design Automation ConferencePortland, Oregon, USA, August 4–7, 2013, New York: American Society of Mechanical Engineers , 2013Conference paper (Other academic)
    Abstract [en]

    Many engineering design optimization problems involve multiple conflicting objectives, which today often are obtained by computational expensive finite element simulations. Evolutionary multi-objective optimization (EMO) methods based on surrogate modeling is one approach of solving this class of problems. In this paper, multi-objective optimization of a disc brake system to a heavy truck by using EMO and radial basis function networks (RBFN) is presented. Three conflicting objectives are considered. These are: 1) minimizing the maximum temperature of the disc brake, 2) maximizing the brake energy of the system and 3) minimizing the mass of the back plate of the brake pad. An iterative Latin hypercube sampling method is used to construct the design of experiments (DoE) for the design variables. Next, thermo-mechanical finite element analysis of the disc brake, including frictional heating between the pad and the disc, is performed in order to determine the values of the first two objectives for the DoE. Surrogate models for the maximum temperature and the brake energy are created using RBFN with polynomial biases. Different radial basis functions are compared using statistical errors and cross validation errors (PRESS) to evaluate the accuracy of the surrogate models and to select the most accurate radial basis function. The multi-objective optimization problem is then solved by employing EMO using the strength Pareto evolutionary algorithm (SPEA2). Finally, the Pareto fronts generated by the proposed methodology are presented and discussed.

  • 9.
    Amouzgar, Kaveh
    et al.
    Department of Mechanical Engineering, School of Engineering, Jönköping University, Jönköping, Sweden.
    Rashid, Asim
    Department of Mechanical Engineering, School of Engineering, Jönköping University, Jönköping, Sweden.
    Strömberg, Niclas
    Department of Mechanical Engineering, School of Engineering, Jönköping University, Jönköping, Sweden.
    Multi-objective optimization of a disc brake system by using SPEA2 and RBFN2013In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference: Volume 3B: 39th Design Automation Conference, New York: ASME Press, 2013Conference paper (Other academic)
    Abstract [en]

    Many engineering design optimization problems involve multiple conflicting objectives, which today often are obtained by computational expensive finite element simulations. Evolutionary multi-objective optimization (EMO) methods based on surrogate modeling is one approach of solving this class of problems. In this paper, multi-objective optimization of a disc brake system to a heavy truck by using EMO and radial basis function networks (RBFN) is presented. Three conflicting objectives are considered. These are: 1) minimizing the maximum temperature of the disc brake, 2) maximizing the brake energy of the system and 3) minimizing the mass of the back plate of the brake pad. An iterative Latin hypercube sampling method is used to construct the design of experiments (DoE) for the design variables. Next, thermo-mechanical finite element analysis of the disc brake, including frictional heating between the pad and the disc, is performed in order to determine the values of the first two objectives for the DoE. Surrogate models for the maximum temperature and the brake energy are created using RBFN with polynomial biases. Different radial basis functions are compared using statistical errors and cross validation errors (PRESS) to evaluate the accuracy of the surrogate models and to select the most accurate radial basis function. The multi-objective optimization problem is then solved by employing EMO using the strength Pareto evolutionary algorithm (SPEA2). Finally, the Pareto fronts generated by the proposed methodology are presented and discussed.

  • 10.
    Amouzgar, Kaveh
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Strömberg, N.
    Radial basis functions with a priori bias in comparisonwith a posteriori bias under multiple modeling criteriaIn: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488Article in journal (Other academic)
  • 11.
    Amouzgar, Kaveh
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Strömberg, Niclas
    University of West.
    An approach towards generating surrogate models by using RBFN with a apriori bias2014In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2014 August 17-20, 2014, Buffalo, NY, USA, American Society of Mechanical Engineers (ASME) , 2014Conference paper (Refereed)
    Abstract [en]

    In this paper, an approach to generate surrogate modelsconstructed by radial basis function networks (RBFN) with a prioribias is presented. RBFN as a weighted combination of radialbasis functions only, might become singular and no interpolationis found. The standard approach to avoid this is to add a polynomialbias, where the bias is defined by imposing orthogonalityconditions between the weights of the radial basis functionsand the polynomial basis functions. Here, in the proposed a prioriapproach, the regression coefficients of the polynomial biasare simply calculated by using the normal equation without anyneed of the extra orthogonality prerequisite. In addition to thesimplicity of this approach, the method has also proven to predictthe actual functions more accurately compared to the RBFNwith a posteriori bias. Several test functions, including Rosenbrock,Branin-Hoo, Goldstein-Price functions and two mathematicalfunctions (one large scale), are used to evaluate the performanceof the proposed method by conducting a comparisonstudy and error analysis between the RBFN with a priori and aposteriori known biases. Furthermore, the aforementioned approachesare applied to an engineering design problem, that ismodeling of the material properties of a three phase sphericalgraphite iron (SGI) . The corresponding surrogate models arepresented and compared

  • 12.
    Amouzgar, Kaveh
    et al.
    Department of Mechanical Engineering, School of Engineering, Jönköping University, Jönköping, Sweden .
    Strömberg, Niclas
    Department of Engineering Science, University West, Trollhättan, Sweden.
    An approach towards generating surrogate models by using RBFN with a priori bias2014In: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, 2014, Vol. 2B, New York, USA: ASME Press, 2014, article id V02BT03A024Conference paper (Refereed)
    Abstract [en]

    In this paper, an approach to generate surrogate modelsconstructed by radial basis function networks (RBFN) with a prioribias is presented. RBFN as a weighted combination of radialbasis functions only, might become singular and no interpolationis found. The standard approach to avoid this is to add a polynomialbias, where the bias is defined by imposing orthogonalityconditions between the weights of the radial basis functionsand the polynomial basis functions. Here, in the proposed a prioriapproach, the regression coefficients of the polynomial biasare simply calculated by using the normal equation without anyneed of the extra orthogonality prerequisite. In addition to thesimplicity of this approach, the method has also proven to predictthe actual functions more accurately compared to the RBFNwith a posteriori bias. Several test functions, including Rosenbrock,Branin-Hoo, Goldstein-Price functions and two mathematicalfunctions (one large scale), are used to evaluate the performanceof the proposed method by conducting a comparisonstudy and error analysis between the RBFN with a priori and aposteriori known biases. Furthermore, the aforementioned approachesare applied to an engineering design problem, that ismodeling of the material properties of a three phase sphericalgraphite iron (SGI) . The corresponding surrogate models arepresented and compared

  • 13.
    Amouzgar, Kaveh
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization. School of Engineering Science, University of Skövde, Sweden.
    Strömberg, Niclas
    Department of Mechanical Engineering, School of Science and Technology, University of Örebro, Örebro, Sweden .
    Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias2017In: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 55, no 4, p. 1453-1469Article in journal (Refereed)
    Abstract [en]

    In order to obtain a robust performance, the established approach when using radial basis function networks (RBF) as metamodels is to add a posteriori bias which is defined by extra orthogonality constraints. We mean that this is not needed, instead the bias can simply be set a priori by using the normal equation, i.e. the bias becomes the corresponding regression model. In this paper we demonstrate that the performance of our suggested approach with a priori bias is in general as good as, or even for many test examples better than, the performance of RBF with a posteriori bias. Using our approach, it is clear that the global response is modelled with the bias and that the details are captured with radial basis functions. The accuracy of the two approaches are investigated by using multiple test functions with different degrees of dimensionality. Furthermore, several modeling criteria, such as the type of radial basis functions used in the RBFs, dimension of the test functions, sampling techniques and size of samples, are considered to study their affect on the performance of the approaches. The power of RBF with a priori bias for surrogate based design optimization is also demonstrated by solving an established engineering benchmark of a welded beam and another benchmark for different sampling sets generated by successive screening, random, Latin hypercube and Hammersley sampling, respectively. The results obtained by evaluation of the performance metrics, the modeling criteria and the presented optimal solutions, demonstrate promising potentials of our RBF with a priori bias, in addition to the simplicity and straight-forward use of the approach.

  • 14.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Product Development Department, School of Engineering, Jönköping University, Jönköping, Sweden.
    Strömberg, Niclas
    Department of Mechanical Engineering, School of Science and Technology, University of Örebro, Sweden.
    Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias2017In: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 55, no 4, p. 1453-1469Article in journal (Refereed)
    Abstract [en]

    In order to obtain a robust performance, the established approach when using radial basis function networks (RBF) as metamodels is to add a posteriori bias which is defined by extra orthogonality constraints. We mean that this is not needed, instead the bias can simply be set a priori by using the normal equation, i.e. the bias becomes the corresponding regression model. In this paper we demonstrate that the performance of our suggested approach with a priori bias is in general as good as, or even for many test examples better than, the performance of RBF with a posteriori bias. Using our approach, it is clear that the global response is modelled with the bias and that the details are captured with radial basis functions. The accuracy of the two approaches are investigated by using multiple test functions with different degrees of dimensionality. Furthermore, several modeling criteria, such as the type of radial basis functions used in the RBFs, dimension of the test functions, sampling techniques and size of samples, are considered to study their affect on the performance of the approaches. The power of RBF with a priori bias for surrogate based design optimization is also demonstrated by solving an established engineering benchmark of a welded beam and another benchmark for different sampling sets generated by successive screening, random, Latin hypercube and Hammersley sampling, respectively. The results obtained by evaluation of the performance metrics, the modeling criteria and the presented optimal solutions, demonstrate promising potentials of our RBF with a priori bias, in addition to the simplicity and straight-forward use of the approach.

  • 15.
    Morshedzadeh, Iman
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Management of virtual models with provenance information in the context of product lifecycle management: industrial case studies2019In: Product Lifecycle Management (Volume 4): The Case Studies / [ed] John Stark, Cham: Springer, 2019, 1, p. 153-170Chapter in book (Refereed)
    Abstract [en]

    Using virtual models instead of physical models can help industries reduce the time and cost of developments, despite the time consuming process of building virtual models. Therefore, reusing previously built virtual models instead of starting from scratch can eliminate a large amount of work from users. Is having a virtual model enough to reuse it in another study or task? In most cases, not. Information about the history of that model makes it clear for the users to decide if they can reuse this model or to what extent the model is needed to be modified. A provenance management system (PMS) has been designed to manage provenance information, and it has been used with product lifecycle management system (PLM) and computer-aided technologies (CAx) to save and present historical information about a virtual model. This chapter presents a sequence-based framework of the CAx-PLM-PMS chain and two application case studies considering the implementation of this framework.

  • 16.
    Olofsson, Jakob
    et al.
    Jönköping University, School of Engineering, JTH, Materials and Manufacturing. Jönköping University, School of Engineering, JTH. Research area Materials and manufacturing – Casting.
    Salomonsson, Kent
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization.
    Johansson, Joel
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Amouzgar, Kaveh
    Jönköping University, School of Engineering, JTH, Product Development. Jönköping University, School of Engineering, JTH. Research area Product Development - Simulation and Optimization. University of Skövde, Sweden.
    A methodology for microstructure-based structural optimization of cast and injection moulded parts using knowledge-based design automation2017In: Advances in Engineering Software, ISSN 0965-9978, E-ISSN 1873-5339, Vol. 109, p. 44-52Article in journal (Refereed)
    Abstract [en]

    The local material behaviour of cast metal and injection moulded parts is highly related to the geometrical design of the part as well as to a large number of process parameters. In order to use structural optimization methods to find the geometry that gives the best possible performance, both the geometry and the effect of the production process on the local material behaviour thus has to be considered.

    In this work, a multidisciplinary methodology to consider local microstructure-based material behaviour in optimizations of the design of engineering structures is presented. By adopting a knowledge-based industrial product realisation perspective combined with a previously presented simulation strategy for microstructure-based material behaviour in Finite Element Analyses (FEA), the methodology integrates Computer Aided Design (CAD), casting and injection moulding simulations, FEA, design automation and a multi-objective optimization scheme into a novel structural optimization method for cast metal and injection moulded polymeric parts. The different concepts and modules in the methodology are described, their implementation into a prototype software is outlined, and the application and relevance of the methodology is discussed.

  • 17.
    Olofsson, Jakob
    et al.
    Department of Materials and Manufacturing – Casting, Jönköping University, School of Engineering, Jönköping, Sweden.
    Salomonsson, Kent
    Department of Product Development, Jönköping University, School of Engineering, Jönköping, Sweden.
    Johansson, Joel
    Department of Product Development, Jönköping University, School of Engineering, Jönköping, Sweden.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A methodology for microstructure-based structural optimization of cast and injection moulded parts using knowledge-based design automation2017In: Advances in Engineering Software, ISSN 0965-9978, E-ISSN 1873-5339, Vol. 109, p. 44-52Article in journal (Refereed)
    Abstract [en]

    The local material behaviour of cast metal and injection moulded parts is highly related to the geometrical design of the part as well as to a large number of process parameters. In order to use structural optimization methods to find the geometry that gives the best possible performance, both the geometry and the effect of the production process on the local material behaviour thus has to be considered. In this work, a multidisciplinary methodology to consider local microstructure-based material behaviour in optimizations of the design of engineering structures is presented. By adopting a knowledge based industrial product realisation perspective combined with a previously presented simulation strategy for microstructure-based material behaviour in Finite Element Analyses (FEA), the methodology integrates Computer Aided Design (CAD), casting and injection moulding simulations, FEA, design automation and a multi-objective optimization scheme into a novel structural optimization method for cast metal and injection moulded polymeric parts. The different concepts and modules in the methodology are described, their implementation into a prototype software is outlined, and the application and relevance of the methodology is discussed. 

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf