Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hjertberg, Tim
    et al.
    Jönköping University, School of Engineering, JTH, Industrial Product Development, Production and Design.
    Stolt, Roland
    Jönköping University, School of Engineering, JTH, Industrial Product Development, Production and Design.
    Elgh, Fredrik
    Jönköping University, School of Engineering, JTH, Industrial Product Development, Production and Design.
    A tool for obtaining transparency and traceability in heterogeneous design automation environments2018In: Computer-Aided Design and Applications, ISSN 1686-4360, Vol. 15, no 4, p. 488-500Article in journal (Refereed)
    Abstract [en]

    Today, CAD-system are used for much more than just geometric modeling. They are complemented by various software and information sources forming a complete environment for handling all life-cycle aspects of the product. In such systems, the CAD-system works as a central hub. The software and information sources may be of various types making the system highly heterogenous. This presents problems with transparency and traceability in the system making long term management difficult. In this paper, a novel tool is presented to keep track of the dependencies between the various parts of such systems providing an overview and making it possible to predict the effect of proposed changes and facilitating long term management. The tool is tested in a highly heterogeneous environment at a manufacturer of aerospace components, with the result that the traceability is expected to increase at the expense of that time must be spent on defining dependencies and meta-information as the system is evolving.

  • 2.
    Hjertberg, Tim
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design. Jönköping University, School of Engineering, JTH, Product Development.
    Stolt, Roland
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design. Jönköping University, School of Engineering, JTH, Product Development.
    Elgh, Fredrik
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design. Jönköping University, School of Engineering, JTH, Product Development.
    Managing Dependencies in Heterogeneous Design Automation Systems2016In: Transdisciplinary Engineering: Crossing Boundaries / [ed] Milton Borsato, Nel Wognum, Margherita Peruzzini, Josip Stjepandić and Wim J.C. Verhagen, IOS Press, 2016, p. 279-288Conference paper (Refereed)
    Abstract [en]

    Increasing competition in cost efficiency, lead-times, product quality, quotation accuracy, and abilities to provide customization drives companies toward development and adoption of new methods. To re-use knowledge gained from previous projects in order to avoid producing the same knowledge again and to circumvent previously encountered obstacles is an approach which is more or less used by most companies. Utilization of Design Automation (DA) systems in the engineering design process have proven to increase process efficiency and to enable new ways of working by systematic re-use of engineering knowledge. In order to ensure system longevity, industrial practitioners and researchers have pointed at implementation and long term management as important aspects to consider during development. The systems are often built on top of commercial software and legacy systems integrated by different types of scripts and system descriptions which becomes dependent of each other in different ways. Changes made during maintenance in one of these artifacts propagates through the dependency structure making traceability and transparency key factors for keeping the system valid over time. This paper presents a description of the problem in a real industrial setting together with a suggestion of an approach, based on set-up and management of dependencies between sections inside and across different types of system components, which is aimed to aid implementation and management of DA tools. A prototype system which informs the user, of functional sections related to a functional section to be updated, have been developed. The prototype is applied on a multidisciplinary heterogeneous system environment used for simulation based knowledge build up and concept evaluations of jet engine components.

  • 3.
    Hjertberg, Tim
    et al.
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Stolt, Roland
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Poorkiany, Morteza
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Johansson, Joel
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Elgh, Fredrik
    Jönköping University, School of Engineering, JTH. Research area Product Development - Computer supported engineering design.
    Implementation and management of design systems for highly customized products – state of practice and future research2015In: Transdisciplinary lifecycle analysis of systems: Proceedings of the 22nd ISPE Inc. International Conference on Concurrent Engineering / [ed] Richard Curran, Nel Wognum, Milton Borsato, Josip Stjepandić, Wim J.C. Verhagen, IOS Press, 2015, p. 165-174Conference paper (Refereed)
    Abstract [en]

    Individualized products, resource-smart design and production, and afocus on customer value have been pointed out as three opportunities for Swedishindustry to stay competitive on a globalized market. All these three opportunitiescan be gained by efficient design and manufacture of highly customized products.However, this requires the development and integration of the knowledge-basedenabling technologies of the future as pointed out by The European Factories ofthe Future Research Association (EFFRA). Highly custom engineered productsrequire an exercising of a very rich and diverse knowledge base about the products,their production and the required resources for design and manufacture. Thedevelopment and implementation of systems for automated design and productionpreparation of customized products is a significant investment in time and money.However, our experience from industry indicates that significant efforts arerequired to introduce and align these kinds of systems with existing operations,legacy systems and overall state of practice. In this paper, support for systemdevelopment in literature has been reviewed in combination with a survey on thestate of practice in four companies regarding implementation and management ofautomated systems for custom engineered products. A gap has been identified anda set of areas for further research are outlined.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf