Digitala Vetenskapliga Arkivet

Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boström, Tove
    et al.
    KTH, School of Biotechnology (BIO), Protein Technology.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Johansson, Henrik J.
    Karlinska Institute, Cancer Proteomics Mass Spectrometry, Dep. of Oncology-Pathology.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lehtiö, Janne
    Karolinska Institute, Cancer Proteomics Mass Spectrometry, Dep. of Oncology-Pathology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Ottosson Takanen, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Investigating the correlation of protein and mRNA levels in human cell lines using quantitative proteomics and transcriptomicsManuscript (preprint) (Other academic)
    Abstract [en]

    An important topic of discussion in proteomics is the degree of correlation of RNA and protein levels in cells, tissues and organs. In this study, the difference in protein and mRNA levels for a number of selected gene targets were investigated across six human cell lines using quantitative proteomics and next generation sequencing-based transcriptomics. The copy numbers of 32 proteins were determined using an absolute quantitative proteomics approach (PrEST-SILAC), where heavy isotope-labeled protein fragments were used as internal standards. A cross evaluation of protein copy numbers determined by mass spectrometry and staining profiles using immunohistochemistry showed good correlation. The mRNA levels were determined using RNA sequencing based on digital counting of sequencing reads and the levels determined as FPKM values. Comparison of the relative variations in mRNA and protein levels for individual genes across the six cell lines showed correlation between protein and mRNA levels, including six genes with high variability in expression levels in the six cell lines resulting in an average correlation of 0.9 (Spearman's rank coefficient). In summary, the analysis of the selected protein targets supports the conclusion that the translation rate across cell lines correlates for a particular gene, suggesting that individual protein levels can be predicted from the respective mRNA levels by defining the relation between protein and mRNA, specific for each human gene.

  • 2.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. Human Protein Atlas.
    Integration of RNA and protein expression profiles to study human cells2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Cellular life is highly complex. In order to expand our understanding of the workings of human cells, in particular in the context of health and disease, detailed knowledge about the underlying molecular systems is needed. The unifying theme of this thesis concerns the use of data derived from sequencing of RNA, both within the field of transcriptomics itself and as a guide for further studies at the level of protein expression. In paper I, we showed that publicly available RNA-seq datasets are consistent across different studies, requiring only light processing for the data to cluster according to biological, rather than technical characteristics. This suggests that RNA-seq has developed into a reliable and highly reproducible technology, and that the increasing amount of publicly available RNA-seq data constitutes a valuable resource for meta-analyses. In paper II, we explored the ability to extrapolate protein concentrations by the use of RNA expression levels. We showed that mRNA and corresponding steady-state protein concentrations correlate well by introducing a gene-specific RNA-to-protein conversion factor that is stable across various cell types and tissues. The results from this study indicate the utility of RNA-seq also within the field of proteomics.

    The second part of the thesis starts with a paper in which we used transcriptomics to guide subsequent protein studies of the molecular mechanisms underlying malignant transformation. In paper III, we applied a transcriptomics approach to a cell model for defined steps of malignant transformation, and identified several genes with interesting expression patterns whose corresponding proteins were further analyzed with subcellular spatial resolution. Several of these proteins were further studied in clinical tumor samples, confirming that this cell model provides a relevant system for studying cancer mechanisms. In paper IV, we continued to explore the transcriptional landscape in the same cell model under moderate hypoxic conditions.

    To conclude, this thesis demonstrates the usefulness of RNA-seq data, from a transcriptomics perspective and beyond; to guide in analyses of protein expression, with the ultimate goal to unravel the complexity of the human cell, from a holistic point of view.

    Download full text (pdf)
    fulltext
  • 3.
    Danielsson, Frida
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Akesson, L.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Profiling changes in response to hypoxia in a four-step cell line model for malignant transformation.2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 4.
    Danielsson, Frida
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fasterius, Erik
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Transcriptome profiling of a cell line model for malignant transformation in response to moderate hypoxiaManuscript (preprint) (Other academic)
    Download full text (pdf)
    fulltext
  • 5.
    Danielsson, Frida
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fasterius, Erik
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Sullivan, Devin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hases, Linnea
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Institute, Huddinge, Sweden.
    Sanli, Kemal
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Al-Khalili Szigyarto, Cristina
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Huss, M.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Hørsholm, Denmark.
    Williams, Cecilia
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Institute, Huddinge, Sweden.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Transcriptome profiling of the interconnection of pathways involved in malignant transformation and response to hypoxia2018In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 9, no 28, p. 19730-19744Article in journal (Refereed)
    Abstract [en]

    In tumor tissues, hypoxia is a commonly observed feature resulting from rapidly proliferating cancer cells outgrowing their surrounding vasculature network. Transformed cancer cells are known to exhibit phenotypic alterations, enabling continuous proliferation despite a limited oxygen supply. The four-step isogenic BJ cell model enables studies of defined steps of tumorigenesis: the normal, immortalized, transformed, and metastasizing stages. By transcriptome profiling under atmospheric and moderate hypoxic (3% O2) conditions, we observed that despite being highly similar, the four cell lines of the BJ model responded strikingly different to hypoxia. Besides corroborating many of the known responses to hypoxia, we demonstrate that the transcriptome adaptation to moderate hypoxia resembles the process of malignant transformation. The transformed cells displayed a distinct capability of metabolic switching, reflected in reversed gene expression patterns for several genes involved in oxidative phosphorylation and glycolytic pathways. By profiling the stage-specific responses to hypoxia, we identified ASS1 as a potential prognostic marker in hypoxic tumors. This study demonstrates the usefulness of the BJ cell model for highlighting the interconnection of pathways involved in malignant transformation and hypoxic response.

    Download full text (pdf)
    fulltext
  • 6.
    Danielsson, Frida
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    James, Tojo
    Gomez-Cabrero, David
    Huss, Mikael
    Assessing the consistency of public human tissue RNA-seq data sets2015In: Briefings in Bioinformatics, ISSN 1467-5463, E-ISSN 1477-4054, Vol. 16, no 6, p. 941-949Article in journal (Refereed)
    Abstract [en]

    Sequencing-based gene expression methods like RNA-sequencing (RNA-seq) have become increasingly common, but it is often claimed that results obtained in different studies are not comparable owing to the influence of laboratory batch effects, differences in RNA extraction and sequencing library preparation methods and bioinformatics processing pipelines. It would be unfortunate if different experiments were in fact incomparable, as there is great promise in data fusion and meta-analysis applied to sequencing data sets. We therefore compared reported gene expression measurements for ostensibly similar samples (specifically, human brain, heart and kidney samples) in several different RNA-seq studies to assess their overall consistency and to examine the factors contributing most to systematic differences. The same comparisons were also performed after preprocessing all data in a consistent way, eliminating potential bias from bioinformatics pipelines. We conclude that published human tissue RNA-seq expression measurements appear relatively consistent in the sense that samples cluster by tissue rather than laboratory of origin given simple preprocessing transformations. The article is supplemented by a detailed walkthrough with embedded R code and figures.

  • 7.
    Danielsson, Frida
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlen, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gad, A. K.
    Profiling the Molecular changes during malignant transformation and response to different oxygen levels, using a combined transcriptomics and proteomics approach2014In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 25, article id P1845Article in journal (Other academic)
  • 8.
    Danielsson, Frida
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. Royal Inst Technol, Sci Life Lab, S-17165 Stockholm, Sweden..
    Peterson, McKenzie Kirsten
    Univ Utah, Sch Med, Dept Pathol, Salt Lake City, UT 84112 USA..
    Araujo, Helena Caldeira
    Univ Madeira, Ctr Quim, P-9020105 Funchal, Portugal..
    Lautenschlaeger, Franziska
    Saarland Univ, Leibniz Inst Neue Mat gGmbH INM & Expt Phys, NT Fac, Campus D2 2,E 2 6, D-66123 Saarbrucken, Germany..
    Britt Gad, Annica Karin
    Univ Madeira, Ctr Quim, P-9020105 Funchal, Portugal.;Uppsala Univ, Dept Med Biochem & Microbiol, S-75237 Uppsala, Sweden..
    Vimentin Diversity in Health and Disease2018In: CELLS, ISSN 2073-4409, Vol. 7, no 10, article id 147Article, review/survey (Refereed)
    Abstract [en]

    Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.

  • 9.
    Danielsson, Frida
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Huss, Mikael
    Rexhepaj, Elton
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    O'Hurley, Gillian
    Klevebring, Daniel
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, Fredrik
    Gad, Annica K. B.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Majority of differentially expressed genes are down-regulated during malignant transformation in a four-stage model2013In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 110, no 17, p. 6853-6858Article in journal (Refereed)
    Abstract [en]

    The transformation of normal cells to malignant, metastatic tumor cells is a multistep process caused by the sequential acquirement of genetic changes. To identify these changes, we compared the transcriptomes and levels and distribution of proteins in a four-stage cell model of isogenically matched normal, immortalized, transformed, and metastatic human cells, using deep transcriptome sequencing and immunofluorescence microscopy. The data show that similar to 6% (n = 1,357) of the human protein-coding genes are differentially expressed across the stages in the model. Interestingly, the majority of these genes are down-regulated, linking malignant transformation to dedifferentiation. The up-regulated genes are mainly components that control cellular proliferation, whereas the down-regulated genes consist of proteins exposed on or secreted from the cell surface. As many of the identified gene products control basic cellular functions that are defective in cancers, the data provide candidates for follow-up studies to investigate their functional roles in tumor formation. When we further compared the expression levels of four of the identified proteins in clinical cancer cohorts, similar differences were observed between benign and cancer cells, as in the cell model. This shows that this comprehensive demonstration of the molecular changes underlying malignant transformation is a relevant model to study the process of tumor formation.

  • 10.
    Danielsson, Frida
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Åkesson, L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Thul, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Björk, L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ait Blal, Carl
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gnann, Christian
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    An image-based view of the microtubule proteome2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 11.
    Danielsson, Frida
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ait Blal, Hammou
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    RNA Deep Sequencing as a Tool for Selection of Cell Lines for Systematic Subcellular Localization of All Human Proteins2013In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 12, no 1, p. 231-239Article in journal (Refereed)
    Abstract [en]

    One of the major challenges of a chromosome-centric proteome project is to explore in a systematic manner the potential proteins identified from the chromosomal genome sequence, but not yet characterized on a protein level. Here, we describe the use of RNA deep sequencing to screen human cell lines for RNA profiles and to use this information to select cell lines suitable for characterization of the corresponding gene product. In this manner, the subcellular localization of proteins can be analyzed systematically using antibody-based confocal microscopy. We demonstrate the usefulness of selecting cell lines with high expression levels of RNA transcripts to increase the likelihood of high quality immunofluorescence staining and subsequent successful subcellular localization of the corresponding protein. The results show a path to combine transcriptomics with affinity proteomics to characterize the proteins in a gene- or chromosome-centric manner.

  • 12.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Gene specific correlation of RNA and protein levels in human cells and tissues2016In: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292Article in journal (Refereed)
    Abstract [en]

    An important issue for molecular biology is to establish if transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on Parallel Reaction Monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue-type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP-ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands protein copies per mRNA molecule for others. In conclusion, our data suggests that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics. 

  • 13.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Käll, Lukas
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Gene-specific correlation of RNA and protein levels in human cells and tissues2016In: Molecular Systems Biology, ISSN 1744-4292, E-ISSN 1744-4292, Vol. 12, no 10, article id 883Article in journal (Refereed)
    Abstract [en]

    An important issue for molecular biology is to establish whether transcript levels of a given gene can be used as proxies for the corresponding protein levels. Here, we have developed a targeted proteomics approach for a set of human non-secreted proteins based on parallel reaction monitoring to measure, at steady-state conditions, absolute protein copy numbers across human tissues and cell lines and compared these levels with the corresponding mRNA levels using transcriptomics. The study shows that the transcript and protein levels do not correlate well unless a gene-specific RNA-to-protein (RTP) conversion factor independent of the tissue type is introduced, thus significantly enhancing the predictability of protein copy numbers from RNA levels. The results show that the RTP ratio varies significantly with a few hundred copies per mRNA molecule for some genes to several hundred thousands of protein copies per mRNA molecule for others. In conclusion, our data suggest that transcriptome analysis can be used as a tool to predict the protein copy numbers per cell, thus forming an attractive link between the field of genomics and proteomics.

  • 14.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Linderbäck, Klas
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Technical University of Denmark, Denmark.
    Validation of antibodies for Western blot applications using orthogonal methodsManuscript (preprint) (Other academic)
    Abstract [en]

    There is a great need for standardized validation methods for antibody specificity and selectivity. Here, we describe the use of orthogonal methods in which the specificity of an antibody in a particular application is determined based on correlation of protein abundance across several samples using an antibody-independent method. We show that pair-wise correlation between orthogonal samples can be used to score the specificity of antibodies in a standardized manner using a test panel of human cell lines. Here, we investigated two independent methods for validation of antibodies in Western blot applications, namely transcriptomics and targeted proteomics and we show that the two methods yield similar, but not identical results. The orthogonal methods can also be used to investigate on- and off- target binding for antibodies with multiple bands in the Western blot assay. In conclusion, orthogonal methods for antibody validation provide an attractive strategy for systematic validation of antibodies in a quantitative manner. 

  • 15.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Djureinovic, D.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Habuka, Masato
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tahmasebpoor, S.
    Danielsson, A.
    Edlund, K.
    Asplund, A.
    Sjöstedt, E.
    Lundberg, E.
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, J.
    Berling, H.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, A.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, I.
    Navani, S.
    Huss, Mikael
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics2014In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 13, no 2, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  • 16.
    Lundberg, Emma
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    AitBlal, C.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björk, L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thul, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Winsnes, Casper F.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    The Cell Atlas: Creation of an image-based atlas of the subcellular distribution of the human proteome.2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Other academic)
  • 17.
    Mahdessian, Diana
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.
    Sullivan, D. P.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.
    Danielsson, Frida
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Arif, Muhammad
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
    Åkesson, Lovisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gnann, Christian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Shutten, Rutger
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Thul, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.
    Carja, Oana
    Department of Genetics, Stanford University, Stanford, CA 94305, USA. ; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA..
    Ayoglu, Burcu
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.
    Mardinoglu, Adil
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom.
    Pontén, Fredrik
    Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
    Lindskog, Cecilia
    Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden..
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. Department of Genetics, Stanford University, Stanford, CA 94305, USA. ; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA..
    Spatiotemporal dissection of the cell cycle regulated human proteomeManuscript (preprint) (Other academic)
    Abstract [en]

    Here we present a spatiotemporal dissection of proteome single cell heterogeneity in human cells, performed with subcellular resolution over the course of a cell cycle. We identify 17% of the human proteome to display cell-to-cell variability, of which we could attribute 25% as correlated to cell cycle progression, and present the first evidence of cell cycle association for 258 proteins. A key finding is that the variance, of many of the cell cycle associated proteins, is only partially explained by the cell cycle, which hints at cross-talk between the cell cycle and other signaling pathways. We also demonstrate that several of the identified cell cycle regulated proteins may be clinically significant in proliferative disorders. This spatially resolved proteome map of the cell cycle, integrated into the Human Protein Atlas, serves as a valuable resource to accelerate the molecular knowledge of the cell cycle and opens up novel avenues for the understanding of cell proliferation.

  • 18.
    Mahdessian, Diana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gnann, Christian
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab. Sci Life Lab KTH, Affin Prote, Stockholm, Sweden..
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Spatiotemporal characterization of the human proteome.2017In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 28Article in journal (Other academic)
  • 19.
    Mahdessian, Diana
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
    Wiking, Mikaela
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bäckström, Anna
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thul, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. Department of Genetics, Stanford University, Stanford, CA 94305, USA ; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA.
    An image-based map of the human mitochondrial proteome and its heterogeneityManuscript (preprint) (Other academic)
    Abstract [en]

    Mitochondria is involved in a numerous variety of cellular functions beyond its role in energy metabolism. Defining the human mitochondrial proteome is crucial to understand the mitochondria’s diverse functions and role in disease. Here, we present an image-based map of the human mitochondrial proteome containing 1,098 proteins. The single cell resolution revealed extensive heterogeneity for as much as 20% (n=226) of the mitochondrial proteome.  These variations are independent of cell cycle position and likely represent metabolic fluctuations in the cell. Our analysis shows that 48% (n=524) of the proteins localize to additional cellular compartments, further contributing to the diverse cellular functions of mitochondria. This map of the mitochondrial proteome, part of the Cell Atlas of the Human Protein Atlas database (www.proteinatlas.org), provides a valuable knowledge resource for studies of mitochondria function, dysfunction and disease.

  • 20.
    Mahdessian, Diana
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lars
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ait Blal, Carl
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thul, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gnann, Christian
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Björk, Lars
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Profiling the human cytoplasmic proteome.2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 21.
    Thul, Peter J.
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bäckström, Anna
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gnann, Christian
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Winsnes, Casper F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    An image-based subcellular map of the human proteome.2017In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 28Article in journal (Other academic)
  • 22.
    Thul, Peter J.
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wiking, Mikaela
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Geladaki, A.
    Ait Blal, Hammou
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Alm, Tove L.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Asplund, A.
    Björk, Lars
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Breckels, L. M.
    Bäckström, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fall, Jenny
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gatto, L.
    Gnann, Christian
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Protein Technology.
    Hjelmare, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Fredric
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lee, Sunjae
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Mulder, J.
    Mulvey, C. M.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöstedt, E.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin P.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Winsnes, Casper F.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhang, Cheng
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, Adil
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lilley, K. S.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    A subcellular map of the human proteome2017In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 356, no 6340, article id 820Article in journal (Refereed)
    Abstract [en]

    Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell.

  • 23.
    Thul, Peter
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åkesson, Lovisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bäckström, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gnann, Christian
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Winsnes, Casper
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Galea, Gabriella
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pepperkok, R.
    Uhlén, Mathias
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Exploring the Proteome of Multilocalizing Proteins2017In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 28Article in journal (Other academic)
  • 24.
    Uhlén, Mathias
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Tech Univ Denmark, Ctr Biosustainabil, Lyngby, Denmark.;Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Karlsson, Max J.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Andreas
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svensson, Anne-Sophie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Scheffel, Julia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Kotol, David
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zhong, Wen
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tebani, Abdellah
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Strandberg, Linnea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab. Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA..
    Sjöstedt, Evelina
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Mulder, Jan
    Karolinska Inst, Dept Neurosci, Stockholm, Sweden..
    Mardinoglu, Adil
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Berling, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Ekblad, Siri
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Dannemeyer, Melanie
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Kanje, Sara
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Rockberg, Johan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Lundqvist, Magnus
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Malm, Magdalena
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Volk, Anna-Luisa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Nilsson, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Månberg, Anna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Dodig-Crnkovic, Tea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pin, Elisa
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    Zwahlen, Martin
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    Oksvold, Per
    KTH Royal Inst Technol, Sci Life Lab, Dept Prot Sci, Stockholm, Sweden..
    von Feilitzen, Kalle
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häussler, Ragna S.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, Cecilia
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Pontén, Fredrik
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Katona, Borbala
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Vuu, Jimmy
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Lindström, Emil
    Uppsala Univ, Dept Pathol, Uppsala, Sweden..
    Nielsen, Jens
    Chalmers Univ Technol, Dept Chem & Biol Engn, Gothenburg, Sweden..
    Robinson, Jonathan
    Chalmers Univ Technol, Dept Chem & Biol Engn, Gothenburg, Sweden..
    Ayoglu, Burcu
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sullivan, Devin
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Thul, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bergström, Göran
    Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med, Gothenburg, Sweden.;Sahlgrens Univ Hosp, Dept Clin Physiol, Gothenburg, Region Vastra G, Sweden..
    Gummesson, Anders
    Univ Gothenburg, Sahlgrenska Acad, Inst Med, Dept Mol & Clin Med, Gothenburg, Sweden..
    Voldborg, Bjorn G.
    Tech Univ Denmark, Ctr Biosustainabil, Lyngby, Denmark..
    Tegel, Hanna
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH Royal Inst Technol, Albanova Univ Ctr, Dept Prot Sci, Stockholm, Sweden..
    Hober, Sophia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Forsström, Björn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fagerberg, Linn
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sivertsson, Åsa
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    The human secretome2019In: Science Signaling, ISSN 1945-0877, E-ISSN 1937-9145, Vol. 12, no 609, article id eaaz0274Article in journal (Refereed)
    Abstract [en]

    The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immuno-assays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood.

  • 25.
    Wiking, Mikaela
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ait Blal, C
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Björk, L.
    Bäckström, Anna
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Danielsson, Frida
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fall, Jenny
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gnann, C
    Hjelmare, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mahdessian, Diana
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schutten, Rutger
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Skogs, M
    Stadler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Sullivan, Devin P.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Thul, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Winsnes, C. F.
    Akesson, L.
    Uhlen, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Drafting the intermediate filament proteome2016In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 27Article in journal (Refereed)
  • 26.
    Wiking, Mikaela
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hjelmare, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Blal, Hammou Ait
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Stadler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mahdessian, Diana
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Danielsson, Frida
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schutten, Rutger
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Åbergh, Annica
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    The Subcellular Protein Atlas2014In: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 25, article id P1603Article in journal (Other academic)
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf