Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akillioglu, Hakan
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Production Systems.
    Demand Responsive Planning: A dynamic and responsive planning framework based on workload control theory for cyber-physical production systems2015Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Recent developments in the area of Cyber-Physical Production Systems prove that high technology readiness level is already achieved and industrialization of such technologies is not far from today. Although these technologies seem to be convenient in providing solutions to environmental uncertainties, their application provides adaptability only at shop floor level. Needless to say, an enterprise cannot reach true adaptability without ensuring adaptation skills at every level in its hierarchy. Commonly used production planning and control approaches in industry today inherit from planning solutions which are developed in response to historical market characteristics. However, market tendency in recent years is towards making personalized products a norm. The emerging complexity out of this trend obliges planning systems to a transition from non-recurring, static planning into continuous re-planning and re-configuration of systems. Therefore, there is a need of responsive planning solutions which are integrated to highly adaptable production system characteristics.

    In this dissertation, Demand Responsive Planning, DRP, is presented which is a planning framework aiming to respond to planning needs of shifting trends in both production system technologies and market conditions. The DRP is based on three main constructs such as dynamicity, responsiveness and use of precise data. These features set up the foundation of accomplishing a high degree of adaptability in planning activities. By this means, problems from an extensive scope can be handled with a responsive behavior (i.e. frequent re-planning) by the use of precise data. The use of precise data implies to execute planning activities subject to actual demand information and real-time shop floor data. Within the context of the DRP, both a continuous workload control method and a dynamic capacity adjustment approach are developed. A test-bed is coded in order to simulate proposed method based on a system emulation reflecting the characteristics of cyber-physical production systems at shop floor level.

    Continuous Precise Workload Control, CPWLC, method is a novel approach aiming at precise control of workload levels with the use of direct load graphs. Supported by a multi-agent platform, it generates dynamic non-periodic release decisions exploiting real time shop floor information. As a result, improved shop floor performances are achieved through controlling workload levels precisely by the release of appropriate job types at the right time.

    Presented dynamic capacity adjustment approach utilizes rapid re-configuration capability of cyber-physical systems in achieving more frequent capacity adjustments. Its implementation architecture is integrated to the CPWLC structure. By this means, a holistic approach is realized whereby improved due date performance is accomplished with minimized shop floor congestion. Hence, sensitivity to changing demand patterns and urgent job completions is improved.

  • 2.
    Dias-Ferreira, Joao
    et al.
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Ribeiro, L.
    Akillioglu, Hakan
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Production Systems.
    Neves, Pedro
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    Onori, Mauro
    KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
    BIOSOARM: a bio-inspired self-organising architecture for manufacturing cyber-physical shopfloors2016In: Journal of Intelligent Manufacturing, ISSN 0956-5515, E-ISSN 1572-8145, p. 1-24Article in journal (Refereed)
    Abstract [en]

    Biological collective systems have been an important source of inspiration for the design of production systems, due to their intrinsic characteristics. In this sense, several high level engineering design principles have been distilled and proposed on a wide number of reference system architectures for production systems. However, the application of bio-inspired concepts is often lost due to design and implementation choices or are simply used as heuristic approaches that solve specific hard optimization problems. This paper proposes a bio-inspired reference architecture for production systems, focused on highly dynamic environments, denominated BIO-inspired Self-Organising Architecture for Manufacturing (BIOSOARM). BIOSOARM aims to strictly adhere to bio-inspired principles. For this purpose, both shopfloor components and product parts are individualized and extended into the virtual environment as fully decoupled autonomous entities, where they interact and cooperate towards the emergence of a self-organising behaviour that leads to the emergence of the necessary production flows. BIOSOARM therefore introduces a fundamentally novel approach to production that decouples the system’s operation from eventual changes, uncertainty or even critical failures, while simultaneously ensures the performance levels and simplifies the deployment and reconfiguration procedures. BIOSOARM was tested into both flow-line and “job shop”-like scenarios to prove its applicability, robustness and performance, both under normal and highly dynamic conditions.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf