Ändra sökning
Avgränsa sökresultatet
12 1 - 50 av 58
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. Dept. of Electrical Eng., Chalmers University of Technology.
    A Framework for Bimanual Folding Assembly Under Uncertainties2017Ingår i: Workshop – Towards robust grasping and manipulation skills for humanoids, 2017Konferensbidrag (Övrigt vetenskapligt)
  • 2.
    Almeida, Diogo
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Karayiannidis, Yiannis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. Dept. of Electrical Eng., Chalmers University of Technology.
    Cooperative Manipulation and Identification of a 2-DOF Articulated Object by a Dual-Arm Robot2018Ingår i: 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) / [ed] IEEE, 2018, s. 5445-5451Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work, we address the dual-arm manipula-tion of a two degrees-of-freedom articulated object that consistsof two rigid links. This can include a linkage constrainedalong two motion directions, or two objects in contact, wherethe contact imposes motion constraints. We formulate theproblem as a cooperative task, which allows the employment ofcoordinated task space frameworks, thus enabling redundancyexploitation by adjusting how the task is shared by the robotarms. In addition, we propose a method that can estimate thejoint location and the direction of the degrees-of-freedom, basedon the contact forces and the motion constraints imposed bythe object. Experimental results demonstrate the performanceof the system in its ability to estimate the two degrees of freedomindependently or simultaneously.

  • 3.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH.
    Karayiannidis, Yiannis
    Chalmers, Sweden.
    Dexterous manipulation by means of compliant grasps and external contacts2017Ingår i: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, IEEE, 2017, s. 1913-1920, artikel-id 8206010Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a method that allows for dexterousmanipulation of an object by exploiting contact with an externalsurface. The technique requires a compliant grasp, enablingthe motion of the object in the robot hand while allowingfor significant contact forces to be present on the externalsurface. We show that under this type of grasp it is possibleto estimate and control the pose of the object with respect tothe surface, leveraging the trade-off between force control andmanipulative dexterity. The method is independent of the objectgeometry, relying only on the assumptions of type of grasp andthe existence of a contact with a known surface. Furthermore,by adapting the estimated grasp compliance, the method canhandle unmodelled effects. The approach is demonstrated andevaluated with experiments on object pose regulation andpivoting against a rigid surface, where a mechanical springprovides the required compliance.

  • 4.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. Royal Inst Technol KTH, Ctr Autonomous Syst, Sch Comp Sci & Commun, Robot Percept & Learning Lab, SE-10044 Stockholm, Sweden..
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden..
    Dexterous Manipulation with Compliant Grasps and External Contacts2017Ingår i: 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) / [ed] Bicchi, A Okamura, A, IEEE , 2017, s. 1913-1920Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a method that allows for dexterous manipulation of an object by exploiting contact with an external surface. The technique requires a compliant grasp, enabling the motion of the object in the robot hand while allowing for significant contact forces to be present on the external surface. We show that under this type of grasp it is possible to estimate and control the pose of the object with respect to the surface, leveraging the trade-off between force control and manipulative dexterity. The method is independent of the object geometry, relying only on the assumptions of type of grasp and the existence of a contact with a known surface. Furthermore, by adapting the estimated grasp compliance, the method can handle unmodelled effects. The approach is demonstrated and evaluated with experiments on object pose regulation and pivoting against a rigid surface, where a mechanical spring provides the required compliance.

  • 5.
    Almeida, Diogo
    et al.
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Karayiannidis, Yiannis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL. Chalmers University of Technology.
    Folding Assembly by Means of Dual-Arm Robotic Manipulation2016Ingår i: 2016 IEEE International Conference on Robotics and Automation, IEEE conference proceedings, 2016, s. 3987-3993Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper, we consider folding assembly as an assembly primitive suitable for dual-arm robotic assembly, that can be integrated in a higher level assembly strategy. The system composed by two pieces in contact is modelled as an articulated object, connected by a prismatic-revolute joint. Different grasping scenarios were considered in order to model the system, and a simple controller based on feedback linearisation is proposed, using force torque measurements to compute the contact point kinematics. The folding assembly controller has been experimentally tested with two sample parts, in order to showcase folding assembly as a viable assembly primitive.

  • 6.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH.
    Karayiannidis, Yiannis
    Robotic Manipulation for Bi-Manual Folding Assembly2015Ingår i: Late Breaking Posters, 2015Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    In this poster the problem of bimanual robotic assembly is considered. In particular we introduce folding assembly which is an assembly task that requires significant rotational motion in order to mate two assembly pieces. We model the connection between the two parts as an ideal virtual prismatic and revolute joint while non-ideal effects on the part movements can be considered as special cases of the ideal virtual joint. The connection between the gripper and the assembly part is also studied by considering the case of rigid and non-rigid grasp. As a proof-of-concept, a stabilizing controller for the assembly task is derived following a bimanual master-slave approach under the assumption of rigid grasps. The controller is validated through simulation while an example object has been designed and printed for experimental validation of our assembly technique.

  • 7.
    Almeida, Diogo
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Viña, Francisco E.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Karayiannidis, Yiannis
    Bimanual Folding Assembly: Switched Control and Contact Point Estimation2016Ingår i: IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, 2016, Cancun: IEEE, 2016Konferensbidrag (Refereegranskat)
    Abstract [en]

    Robotic assembly in unstructured environments is a challenging task, due to the added uncertainties. These can be mitigated through the employment of assembly systems, which offer a modular approach to the assembly problem via the conjunction of primitives. In this paper, we use a dual-arm manipulator in order to execute a folding assembly primitive. When executing a folding primitive, two parts are brought into rigid contact and posteriorly translated and rotated. A switched controller is employed in order to ensure that the relative motion of the parts follows the desired model, while regulating the contact forces. The control is complemented with an estimator based on a Kalman filter, which tracks the contact point between parts based on force and torque measurements. Experimental results are provided, and the effectiveness of the control and contact point estimation is shown.

  • 8. Ansari, R. Jaberzadeh
    et al.
    Karayiannidis, Yiannis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Reglerteknik.
    Reducing the human effort for human-robot cooperative object manipulation via control design2017Ingår i: IFAC PAPERSONLINE, ELSEVIER SCIENCE BV , 2017, Vol. 50, nr 1, s. 14922-14927Konferensbidrag (Refereegranskat)
    Abstract [en]

    This study is concerned with the shared object manipulation problem in a physical Human-Robot Interaction (pHRI) setting. In such setups, the operator manipulates the object with the help of a robot. In this paper, the operator is assigned with the lead role, and the robot is passively following the forces/torques exerted by the operator. We propose a controller that is free from the well-known translation/rotation problem and enhances the operator's ability to move the object by reducing the human effort. The key point in our study is that the controller is defined based on the instantaneous center of rotation. The passivity of the system including the object and the manipulator has been evaluated. Simulation results validate the theoretical findings on different scenarios of subsequent rotations and translations of the object.

  • 9.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    An Adaptive Force Regulator for a Robot in Compliant Contact with an Unknown Surface2005Ingår i: 2005 IEEE International Conference on Robotics and Automation (ICRA), Vols 1-4, 2005, s. 2685-2690Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper refers to the problem of force regulation for a robot finger with soft tip in contact with a rigid surface with unknown geometrical characteristics. A simple adaptive controller is employed in order to cope with surface kinematic uncertainties and the asymptotic stability of the force error is shown for the spatial case. Simulation results demonstrate the controller performance.

  • 10.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    An adaptive law for slope identification, position tracking and force regulation for a robot in compliant contact with an unknown surface2007Ingår i: Mediterranean Conference on  Control & Automation, 2007. MED '07., 2007, s. 52-57Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work deals with the problem of force regulation and position trajectory tracking for a robot in compliant contact under kinematic uncertainties. A robotic finger with a soft hemispherical tip of uncertain compliance is considered in contact with a rigid flat surface of unknown position and orientation. A novel adaptive controller is proposed and is proved to achieve the convergence of force and position errors to zero by identifying the slope given a persistently excited desired velocity. The performance of the proposed controller is demonstrated by a simulation example.

  • 11.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force position control for a robot finger with a soft tip and kinematic uncertainties2007Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 55, nr 4, s. 328-336Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We consider the problem of force and position regulation for a robot finger with a soft tip in contact with a surface with unknown geometrical characteristics. An adaptive controller is proposed, and the asymptotic convergence of the applied force error and the estimated position error of the tip to zero is shown for the spatial case. Simulation results demonstrate the controller performance.

  • 12.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/position control self-tuned to unknown surface slopes using motion variables2008Ingår i: Robotica (Cambridge. Print), ISSN 0263-5747, E-ISSN 1469-8668, Vol. 26, nr 6, s. 703-710Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work considers the problem of force/position regulationfor a robotic finger in compliant contact with an unknowncurved surface resulting in uncertain force and positioncontrol subspaces. The proposed controller is an adaptivecontrol scheme of a simple structure that achieves the desiredtarget by the on-line tuning of the position and force controlactions to their corresponding actual subspaces at the desiredpoint using motion state feedback. The local asymptoticstability of the system equilibrium point is proved and anestimate of the region of attraction is given. The controllerperformance is illustrated by a simulation example.

  • 13.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/Position Regulation for a Robot in Compliant Contact Using Adaptive Surface Slope Identification2008Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 53, nr 9, s. 2116-2122Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work proposes a control law for the force position regulation problem under surface kinematic uncertainties. A compliant contact with friction is considered. The control law achieves exact regulation of force and position along the surface tangent by identifying the uncertain surface slope without any force, tactile and/or vision sensory requirements. The asymptotic stability of the closed loop system equilibrium point is proved in a local sense and is demonstrated by a simulation example.

  • 14.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Performance analysis of a soft tip robotic finger controlled by a parallel force/position regulator under kinematic uncertainties2007Ingår i: IET Control Theory & Applications, ISSN 1751-8644, E-ISSN 1751-8652, Vol. 1, nr 1, s. 273-280Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The performance of a modified parallel control scheme is examined under surfacekinematic uncertainties using nonlinear stability analysis. The controlled system is a roboticfinger with a soft hemispherical fingertip of significant radius in contact with an unknownsurface. Analysis of the control system performance shows that force converges to the desiredvalue, whereas position errors stay close to zero and in some cases can even vanish despite uncertainties. Simulation results support the theoretical findings and illustrate the performance of theproposed controller.

  • 15.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    PID type robot joint position regulation with prescribed performance guaranties2010Ingår i: 2010 IEEE International Conference on  Robotics and Automation (ICRA) / [ed] Rakotondrabe, M; Ivan, IA, IEEE Robotics and Automation Society, 2010, s. 4137-4142Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper proposes a PID type regulator that achieves not only the global asymptotic convergence of the robot joint velocities and position errors to zero but it also guarantees a prescribed performance for the position error transient that is independent of system constants and control parameters. The proportional term of the control input uses a transformed error (TP) which incorporates the desired performance function; given sufficiently high proportional and damping gains, the proposed TPID controller ensures the position error's prescribed performance irrespective of constant disturbances and choice of control gains. Control parameter selection is merely confined in achieving admissible input torques. Simulation results for a three dof spatial robot confirm the theoretical analysis and illustrate the robustness of the prescribed performance regulator in case of time-variant bounded disturbances.

  • 16.
    Doulgeri, Zoe
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Karayiannidis, Yiannis
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Zoidi, Olga
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Prescribed performance control for robot joint trajectory tracking under parametric and model uncertainties2009Ingår i: 17th Mediterranean Conference on Control and Automation, 2009. MED'09, VDE Verlag GmbH, 2009, s. 1313-1318Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work proposes a control law for the robot joint trajectory tracking in free space that achieves a prescribed performance of the joint position error under parametric uncertainties; the control law is extended for the case of bounded disturbances. A performance function incorporating predefined performance indices is used to produce a transformed error that is injected in the controller. Furthermore, asymptotic stability of the velocity error in case of zero disturbances and uniformly ultimate boundedness in an arbitrarily small region for bounded disturbances is achieved. Simulation results confirm the theoretical findings and compare the proposed controller with a conventional one.

  • 17.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Dimarogonas, Dimos
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Multi-agent average consensus control with prescribed performance guarantees2012Ingår i: 2012 IEEE 51st Annual Conference on Decision and Control (CDC), IEEE , 2012, s. 2219-2225Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work proposes a distributed control scheme for the state agreement problem which can guarantee prescribed performance for the system transient. In particular, i) we consider a set of agents that can exchange information according to a static communication graph, ii) we a priori define time-dependent constraints at the edge's space (errors between agents that exchange information) and iii) we design a distributed controller to guarantee that the errors between the neighboring agents do not violate the constraints. Following this technique the contributions are twofold: a) the convergence rate of the system and the communication structure of the agents' network which are strictly connected can be decoupled, and b) the connectivity properties of the initially formed communication graph are rendered invariant by appropriately designing the prescribed performance bounds. It is also shown how the structure and the parameters of the prescribed performance controller can be chosen in case of connected tree graphs and connected graphs with cycles. Simulation results validate the theoretically proven findings while enlightening the merit of the proposed prescribed performance agreement protocol as compared to the linear one.

  • 18.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Adaptive control for frictional robot contact tasks on uncertain surface slopes2008Ingår i: 2008 MEDITERRANEAN CONFERENCE ON CONTROL AUTOMATION, VOLS 1-4, NEW YORK: IEEE , 2008, s. 1300-1305Konferensbidrag (Refereegranskat)
    Abstract [en]

    In robot constrained motion problems with frictional contacts, uncertainties on the contacted surface slope distort control targets and affect the control system performance. The surface normal direction cosines are in this case uncertain parameters that are involved in both the control law and the control targets. This work proposes an adaptive controller that achieves the desired goal given a persistently excited tip velocity magnitude on the surface by achieving the convergence of the estimated direction parameters to their actual values. The controller requires measurements of total force and joint variables. A simulation example for a 6 d.o.f. robot is used to illustrate the theoretical results.

  • 19.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Adaptive control of robot contact tasks with on-line learning of planar surfaces2009Ingår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 45, nr 10, s. 2374-2382Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In robot constrained motion problems on planar surfaces with frictional contacts, uncertainties on the contacted surface not only affect the control system performance but also distort control targets. The surface normal direction cosines are in this case uncertain parameters that are involved in both the control law and the control targets. This work proposes an adaptive learning controller that uses force and joint position/velocity measurements to simultaneously learn the surface orientation and achieve the desired goal. Simulation examples for a 6 dof robot are used to illustrate the theoretical results and the performance of the proposed controller in practical cases.

  • 20.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    An adaptive law for slope identification and force position regulation using motion variables2006Ingår i: 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, NEW YORK: IEEE , 2006, s. 3538-3543Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work proposes an adaptive control law for the force position regulation problem under surface kinematic uncertainties. A compliant contact with friction is considered. The control law achieves exact regulation of force and position along the surface tangent by identifying the surface slope. The asymptotic stability of the closed loop system equilibrium point is proved in a local sense and is demonstrated by a simulation example

  • 21.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Blind force/position control on unknown planar surfaces2009Ingår i: IET Control Theory & Applications, ISSN 1751-8644, E-ISSN 1751-8652, Vol. 3, nr 5, s. 595-603Artikel i tidskrift (Refereegranskat)
    Abstract [en]

     In robot contact tasks on planar surfaces with frictional contacts, kinematic uncertainties of thecontacted surface affect the control system performance and distort control targets. An adaptive controllerthat uses force and joint position/velocity measurements to simultaneously learn the surface orientation andachieve the desired goal is proposed. Simulation examples are used to illustrate the theoretical results andthe performance of the proposed controller in practical cases.

  • 22.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/Position Regulation for a Robotic Finger in Compliant Contact with an Unknown Surface2005Ingår i: 2005 IEEE International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and Automation, Vols 1 and 2, NEW YORK: IEEE , 2005, s. 77-82Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we are concerned with the problem of force and position regulation of a soft robotic finger in contact with a flat unknown surface. A type of parallel control scheme with gravity compensation is applied. Using nonlinear stability theory it is shown that the proposed controller achieves exact force regulation. It is further shown that position errors may stay close to zero and in some cases can even vanish even in the presence of uncertainties. Simulation results support theoretical findings.

  • 23.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/position tracking of a robot in compliant contact with unknown stiffness and surface kinematics2007Ingår i: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, NEW YORK: IEEE , 2007, s. 4190-4195Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work deals with the problem of force/position trajectory tracking under uncertainties arising from surface position and orientation. A robotic finger with a soft hemispherical tip of uncertain compliance parameter is considered in contact with a rigid flat surface. A novel adaptive controller is designed using online estimates of the unknown parameters and is proved to achieve force and position tracking by ensuring the convergence of the estimated normal to the surface direction to its actual value. The performance of the proposed controller is demonstrated by a simulation example.

  • 24.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Doulgeri, Zoe
    Aristotle University of Thessaloniki, Greece.
    Model-free robot joint position regulation and tracking with prescribed performance guarantees2012Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 60, nr 2, s. 214-226Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The problem of robot joint position control with prescribed performance guarantees is considered; the control objective is the error evolution within prescribed performance bounds in both problems of regulation and tracking. The proposed controllers do not utilize either the robot dynamic model or any approximation structures and are composed by simple PID or PD controllers enhanced by a proportional term of a transformed error through a transformation related gain. Under a sufficient condition for the damping gain, the proposed controllers are able to guarantee (i) predefined minimum speed of convergence, maximum steady state error and overshoot concerning the position error and (ii) uniformly ultimate boundedness (UUB) of the velocity error. The use of the integral term reduces residual errors allowing the proof of asymptotic convergence of both velocity and position errors to zero for the regulation problem under constant disturbances. Performance is a priori guaranteed irrespective of the selection of the control gain values. Simulation results of a three dof spatial robotic manipulator and experimental results of one dof manipulator are given to confirm the theoretical findings.

  • 25.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Doulgeri, Zoe
    Aristotle University of Thessaloniki.
    Regressor-free prescribed performance robot tracking2013Ingår i: Robotica (Cambridge. Print), ISSN 0263-5747, E-ISSN 1469-8668Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fast and robust tracking against unknown disturbances is required in many modern complex robotic structures and applications, for which knowledge of the full exact nonlinear system is unreasonable to assume. This paper proposes a regressor-free nonlinear controller of low complexity which ensures prescribed performance position error tracking subject to unknown endogenous and exogenous bounded dynamics assuming that joint position and velocity measurements are available. It is theoretically shown and demonstrated by a simulation study that the proposed controller can guarantee tracking of the desired joint position trajectory with a priori determined accuracy, overshoot and speed of response. Preliminary experimental results to a simplified system are promising for validating the controller to more complex structures.

  • 26.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Regressor-free robot joint position tracking with prescribed performance guarantees2011Ingår i: ROBIO 2011: IEEE International Conference on Robotics and Biomimetics, 2011, s. 2312-2317Konferensbidrag (Refereegranskat)
    Abstract [en]

    Fast and robust tracking against unknown disturbancesis required in many modern complex robotic structuresand applications for which knowledge of the full exact nonlinearsystem is unreasonable to assume. This paper proposesa regressor-free nonlinear controller of low complexity whichensures prescribed performance position error tracking subjectto unknown endogenous and exogenous bounded dynamicsassuming that joint position and velocity measurements areavailable. It is theoretically shown and demonstrated by asimulation study that the proposed controller can guaranteetracking of the desired joint position trajectory with a prioridetermined accuracy, overshoot and speed of response. Preliminaryexperimental results to a simplified system are promisingfor validating the controller to more complex structures.

  • 27.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Robot contact tasks in the presence of control target distortions2010Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 58, nr 5, s. 596-606Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This work refers to the problem of controlling robot motion and force in frictional contacts under environmental errors and particularly orientation errors that distort the desired control targets and control subspaces. The proposed method uses online estimates of the surface normal (tangent) direction to dynamically modify the control target and control space decomposition. It is proved that these estimates converge to the actual value even though the elasticity and friction parameters are unknown. The proposed control solution is demonstrated through simulation examples in three-dimensional robot motion tasks contacting both planar and curved surfaces.

  • 28.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Robot force/position tracking on a surface of unknown orientation2008Ingår i: European Robotics Symposium 2008 / [ed] Herman Bruyninckx and Libor Preucil and Miroslav Kulich, Springer Berlin/Heidelberg, 2008, s. 253-262Konferensbidrag (Refereegranskat)
    Abstract [en]

    The problem of robot force and position trajectory tracking is revisited in the case of an uncertain mapping of a surface into the robot space; then, although it is possible to define the desired trajectories with respect to the constraint surface, the lack of knowledge of the constraint direction in the robot space, means that the position and force control subspaces are uncertain. Such a case arises when for example the surface is misplaced. A novel adaptive controller is proposed using estimates of the constraint surface normal direction that converge to the actual value; the controller drives the actual force and position errors to zero given a persistently excited desired velocity on the surface. The performance of the proposed controller is demonstrated by a simulation example.

  • 29.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Robot joint position tracking with an approximator-free prescribed performance controller2011Ingår i: 2011 19th Mediterranean Conference on Control and Automation, MED 2011, 2011, s. 564-569Konferensbidrag (Refereegranskat)
    Abstract [en]

    This work addresses the problem of joint position tracking with prescribed performance guarantees and proposes a novel controller able to guarantee i) predefined minimum speed of convergence, maximum steady state error and over shoot concerning the position tracking error and ii) uniformly ultimate boundedness of the system state. Neither the robot dynamic model nor any approximation structures are utilized in the control law. Control gain lower bounds are dependent on some prior robot knowledge but gain tuning is simplified since the only concern is to adopt those values that lead to reasonable input torques. Simulation results of a 3 dof spatial robotic manipulator are given to confirm the theoretical findings.

  • 30.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS. Chalmers University of Technology, Sweden.
    Droukas, L.
    Doulgeri, Z.
    Operational space robot control for motion performance and safe interaction under Unintentional Contacts2017Ingår i: 2016 European Control Conference, ECC 2016, Institute of Electrical and Electronics Engineers Inc. , 2017, s. 407-412Konferensbidrag (Refereegranskat)
    Abstract [en]

    A control law achieving motion performance of quality and compliant reaction to unintended contacts for robot manipulators is proposed in this work. It achieves prescribed performance evolution of the position error under disturbance forces up to a tunable level of magnitude. Beyond this level, it deviates from the desired trajectory complying to what is now interpreted as unintentional contact force, thus achieving enhanced safety by decreasing interaction forces. The controller is a passivity model based controller utilizing an artificial potential that induces vanishing vector fields. Simulation results with a three degrees of freedom (DOF) robot under the control of the proposed scheme, verify theoretical findings and illustrate motion performance and compliance under an external force of short duration in comparison with a switched impedance scheme.

  • 31.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Rovithakis, George
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    A neuro-adaptive controller for the force/position tracking of a robot manipulator under model uncertainties in compliance and friction2006Ingår i: Proceedings of 2006 Mediterranean Conference on Control and Automation, Vols 1 and 2, NEW YORK: IEEE , 2006, s. 75-80Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work, we consider the force and position trajectory tracking for a robot manipulator in compliant contact with a surface in the presence of unknown stiffness and dynamic friction. A novel neuro-adaptive controller is proposed that exploits the approximation capabilities of the linear in the weights neural networks and the uniform ultimate boundedness of force and position error is proved. Simulation results illustrate the performance of the proposed controller.

  • 32.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Rovithakis, George
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/position tracking for a robotic finger in compliant contact with a surface using neuro-adaptive control2006Ingår i: Joint 2006 IEEE Conference on Control Applications (CCA), Computer-Aided Control Systems Design Symposium (CACSD) and International Symposium on Intelligent Control (ISIC), 2006, s. 1608-1613Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work, the problem of force/position tracking for a robotic finger in compliant contact with a surface under non-parametric uncertainties is considered. In particular, structural uncertainties are assumed to characterize the compliance model as well as the robot dynamic model. A novel neuro-adaptive controller is proposed that exploits the approximation capabilities of the linear in the weights neural networks and the uniform ultimate boundedness of force and position error is proved. Simulation results illustrate the performance of the proposed controller

  • 33.
    Karayiannidis, Yiannis
    et al.
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Rovithakis, George
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Doulgeri, Zoe
    Department of Electrical and Computer Eng., Aristotle University of Thessaloniki.
    Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control2007Ingår i: Automatica, ISSN 0005-1098, E-ISSN 1873-2836, Vol. 43, nr 7, s. 1281-1288Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The problem of force/position tracking for a robotic manipulator in compliant contact with a surface under non-parametric uncertainties is considered. In particular, structural uncertainties are assumed to characterize the compliance and surface friction models, as well as the robot dynamic model. A novel neuro-adaptive controller is proposed, that exploits the approximation capabilities of the linear in the weights neural networks, guaranteeing the uniform ultimate boundedness of force and position error with respect to arbitrarily small sets, plus the boundedness of all signals in the closed loop. Simulations highlight the approach.

  • 34.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. Chalmers, Sweden.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Barrientos, Francisco Eli Vina
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    An Adaptive Control Approach for Opening Doors and Drawers Under Uncertainties2016Ingår i: IEEE Transactions on robotics, ISSN 1552-3098, E-ISSN 1941-0468, Vol. 32, nr 1, s. 161-175Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We study the problem of robot interaction with mechanisms that afford one degree of freedom motion, e.g., doors and drawers. We propose a methodology for simultaneous compliant interaction and estimation of constraints imposed by the joint. Our method requires no prior knowledge of the mechanisms' kinematics, including the type of joint, prismatic or revolute. The method consists of a velocity controller that relies on force/torque measurements and estimation of the motion direction, the distance, and the orientation of the rotational axis. It is suitable for velocity controlled manipulators with force/torque sensor capabilities at the end-effector. Forces and torques are regulated within given constraints, while the velocity controller ensures that the end-effector of the robot moves with a task-related desired velocity. We give proof that the estimates converge to the true values under valid assumptions on the grasp, and error bounds for setups with inaccuracies in control, measurements, or modeling. The method is evaluated in different scenarios involving opening a representative set of door and drawer mechanisms found in household environments.

  • 35.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Mapping Human Intentions to Robot Motions via Physical Interaction Through a Jointly-held Object2014Ingår i: Robot and Human Interactive Communication, 2014 RO-MAN: The 23rd IEEE International Symposium on, 2014, s. 391-397Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this paper we consider the problem of human-robot collaborative manipulation of an object, where the human is active in controlling the motion, and the robot is passively following the human's lead. Assuming that the human grasp of the object only allows for transfer of forces and not torques, there is a disambiguity as to whether the human desires translation or rotation. In this paper, we analyze different approaches to this problem both theoretically and in experiment. This leads to the proposal of a control methodology that uses switching between two different admittance control modes based on the magnitude of measured force to achieve disambiguation of the rotation/translation problem.

  • 36.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Online Contact Point Estimation for Uncalibrated Tool Use2014Ingår i: Robotics and Automation (ICRA), 2014 IEEE International Conference on, IEEE Robotics and Automation Society, 2014, s. 2488-2493Konferensbidrag (Refereegranskat)
    Abstract [en]

    One of the big challenges for robots working outside of traditional industrial settings is the ability to robustly and flexibly grasp and manipulate tools for various tasks. When a tool is interacting with another object during task execution, several problems arise: a tool can be partially or completely occluded from the robot's view, it can slip or shift in the robot's hand - thus, the robot may lose the information about the exact position of the tool in the hand. Thus, there is a need for online calibration and/or recalibration of the tool. In this paper, we present a model-free online tool-tip calibration method that uses force/torque measurements and an adaptive estimation scheme to estimate the point of contact between a tool and the environment. An adaptive force control component guarantees that interaction forces are limited even before the contact point estimate has converged. We also show how to simultaneously estimate the location and normal direction of the surface being touched by the tool-tip as the contact point is estimated. The stability of the the overall scheme and the convergence of the estimated parameters are theoretically proven and the performance is evaluated in experiments on a real robot.

  • 37.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Online Kinematics Estimation for Active Human-Robot Manipulation of Jointly Held Objects2013Ingår i: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE , 2013, s. 4872-4878Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper introduces a method for estimating the constraints imposed by a human agent on a jointly manipulated object. These estimates can be used to infer knowledge of where the human is grasping an object, enabling the robot to plan trajectories for manipulating the object while subject to the constraints. We describe the method in detail, motivate its validity theoretically, and demonstrate its use in co-manipulation tasks with a real robot.

  • 38.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Design of force-driven online motion plans for door opening under uncertainties2012Ingår i: Workshop on Real-time Motion Planning: Online, Reactive, and in Real-time, 2012Konferensbidrag (Refereegranskat)
    Abstract [en]

    The problem of door opening is fundamental for household robotic applications. Domestic environments are generally less structured than industrial environments and thus several types of uncertainties associated with the dynamics and kinematics of a door must be dealt with to achieve successful opening. This paper proposes a method that can open doors without prior knowledge of the door kinematics. The proposed method can be implemented on a velocity-controlled manipulator with force sensing capabilities at the end-effector. The velocity reference is designed by using feedback of force measurements while constraint and motion directions are updated online based on adaptive estimates of the position of the door hinge. The online estimator is appropriately designed in order to identify the unknown directions. The proposed scheme has theoretically guaranteed performance which is further demonstrated in experiments on a real robot. Experimental results additionally show the robustness of the proposed method under disturbances introduced by the motion of the mobile platform.

  • 39.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Interactive perception and manipulation of unknown constrained mechanisms using adaptive control2013Ingår i: ICRA 2013 Mobile Manipulation Workshop on Interactive Perception, 2013Konferensbidrag (Refereegranskat)
  • 40.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Model-free robot manipulation of doors and drawers by means of fixed-grasps2013Ingår i: 2013 IEEE International Conference on Robotics and Automation (ICRA), New York: IEEE , 2013, s. 4485-4492Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper addresses the problem of robot interaction with objects attached to the environment through joints such as doors or drawers. We propose a methodology that requires no prior knowledge of the objects’ kinematics, including the type of joint - either prismatic or revolute. The method consists of a velocity controller which relies onforce/torque measurements and estimation of the motion direction,rotational axis and the distance from the center of rotation.The method is suitable for any velocity controlled manipulatorwith a force/torque sensor at the end-effector. The force/torquecontrol regulates the applied forces and torques within givenconstraints, while the velocity controller ensures that the endeffectormoves with a task-related desired tangential velocity. The paper also provides a proof that the estimates converge tothe actual values. The method is evaluated in different scenarios typically met in a household environment.

  • 41.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Vina, Francisco
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    "Open Sesame!" Adaptive Force/Velocity Control for Opening Unknown Doors2012Ingår i: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, IEEE , 2012, s. 4040-4047Konferensbidrag (Refereegranskat)
    Abstract [en]

    The problem of door opening is fundamental for robots operating in domestic environments. Since these environments are generally less structured than industrial environments, several types of uncertainties associated with the dynamics and kinematics of a door must be dealt with to achieve successful opening. This paper proposes a method that can open doors without prior knowledge of the door kinematics. The proposed method can be implemented on a velocity-controlled manipulator with force sensing capabilities at the end-effector. The method consists of a velocity controller which uses force measurements and estimates of the radial direction based on adaptive estimates of the position of the door hinge. The control action is decomposed into an estimated radial and tangential direction following the concept of hybrid force/motion control. A force controller acting within the velocity controller regulates the radial force to a desired small value while the velocity controller ensures that the end effector of the robot moves with a desired tangential velocity leading to task completion. This paper also provides a proof that the adaptive estimates of the radial direction converge to the actual radial vector. The performance of the control scheme is demonstrated in both simulation and on a real robot.

  • 42.
    Karayiannidis, Yiannis
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Ögren, Petter
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Adaptive force/velocity control for opening unknown doors2012Ingår i: Robot Control, Volume 10, Part  1, 2012, s. 753-758Konferensbidrag (Refereegranskat)
    Abstract [en]

    The problem of door opening is fundamental for robots operating in domesticenvironments. Since these environments are generally unstructured, a robot must deal withseveral types of uncertainties associated with the dynamics and kinematics of a door to achievesuccessful opening. The present paper proposes a dynamic force/velocity controller which usesadaptive estimation of the radial direction based on adaptive estimates of the door hinge’sposition. The control action is decomposed into estimated radial and tangential directions,which are proved to converge to the corresponding actual values. The force controller usesreactive compensation of the tangential forces and regulates the radial force to a desired smallvalue, while the velocity controller ensures that the robot’s end-effector moves with a desiredtangential velocity. The performance of the control scheme is demonstrated in simulation witha 2 DoF planar manipulator opening a door.

  • 43. Macellari, Luca
    et al.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Robotik, perception och lärande, RPL.
    Dimarogonas, Dimos V.
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik.
    Multi-Agent Second Order Average Consensus With Prescribed Transient Behavior2017Ingår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 62, nr 10, s. 5282-5288Artikel i tidskrift (Refereegranskat)
  • 44.
    Markdahl, Johan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Hu, Xiaoming
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Cooperative object path following control by means of mobile manipulators: A switched systems approach2012Ingår i: IFAC Proceedings Volumes (IFAC-PapersOnline): Robot Control, Vol 10, Part 1, IFAC Papers Online, 2012, s. 773-778Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper proposes a switched control algorithm for distributed cooperative manipulation of rigid bodies in a planar setting. More specifically, we consider the problem of making a grasped object follow a desired position and orientation path. The system contains N robots, possibly of heterogeneous designs, each of which consists of a manipulator arm and a nonholonomic mobile platform. Control is based on local information, is carried out on a kinematic level and partly utilizes inverse kinematics. We use Lyapunov-like arguments to prove that the algorithm is almost globally stable and also show that its parameters can be chosen so that any input saturation level is met. The time between certain switches is proved to be bounded below, and the system is shown to be free of any Zeno behavior.

  • 45.
    Markdahl, Johan
    et al.
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Hu, Xiaoming
    KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), Optimeringslära och systemteori.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Distributed Cooperative Object Attitude Manipulation2012Ingår i: 2012 IEEE International Conference on Robotics and Automation (ICRA), IEEE Computer Society, 2012, s. 2960-2965Konferensbidrag (Refereegranskat)
    Abstract [en]

    This paper proposes a local information based control law in order to solve the planar manipulation problem of rotating a grasped rigid object to a desired orientation using multiple mobile manipulators. We adopt a multi-agent systems theory approach and assume that: (i) the manipulators (agents) are capable of sensing the relative position to their neighbors at discrete time instances, (ii) neighboring agents may exchange information at discrete time instances, and (iii) the communication topology is connected. Control of the manipulators is carried out at a kinematic level in continuous time and utilizes inverse kinematics. The mobile platforms are assigned trajectory tracking tasks that adjust the positions of the manipulator bases in order to avoid singular arm configurations. Our main result concerns the stability of the proposed control law.

  • 46.
    Naber, Adam
    et al.
    Chalmers Univ Technol, Biomechatron & Neurorehabil Lab, Dept Elect Engn, Gothenburg, Sweden..
    Karayiannidis, Yiannis
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Robotik, perception och lärande, RPL.
    Ortiz-Catalan, Max
    Chalmers Univ Technol, Biomechatron & Neurorehabil Lab, Dept Elect Engn, Gothenburg, Sweden.;Integrum AB, S-43137 Molndal, Sweden..
    Universal, Open Source, Myoelectric Interface for Assistive Devices2018Ingår i: 2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), IEEE , 2018, s. 1585-1589Konferensbidrag (Refereegranskat)
    Abstract [en]

    We present an integrated, open-source platform for the control of assistive vehicles. The system is vehicle-agnostic and can be controlled using a myoelectric interface to translate muscle contractions into vehicular commands. A modular shared-control system was used to enhance safety and ease of use, and three collision avoidance systems were included and verified in both an included test platform and on a quadcopter operating in a simulated environment. Seven subjects performed the experiments and rated the user experience of the system under each of the provided collision avoidance systems with positive results. Qualitative tests with the quadcopter validated the proposed system and shared-control techniques. This open-source platform for shared control between humans and machines integrates decoding of motor volition with control engineering to expedite further investigation into the operation of mobile robots.

  • 47.
    Smith, Christian
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Karayiannidis, Ioannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Nalpantidis, Lazaros
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Gratal, Javier
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Qi, Peng
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Dimarogonas, Dimos
    KTH, Skolan för elektro- och systemteknik (EES), Reglerteknik. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Dual arm manipulation-A survey2012Ingår i: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 60, nr 10, s. 1340-1353Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Recent advances in both anthropomorphic robots and bimanual industrial manipulators had led to an increased interest in the specific problems pertaining to dual arm manipulation. For the future, we foresee robots performing human-like tasks in both domestic and industrial settings. It is therefore natural to study specifics of dual arm manipulation in humans and methods for using the resulting knowledge in robot control. The related scientific problems range from low-level control to high level task planning and execution. This review aims to summarize the current state of the art from the heterogenous range of fields that study the different aspects of these problems specifically in dual arm manipulation.

  • 48.
    Smith, Christian
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Optimal Command Ordering for Serial Link Manipulators2012Ingår i: 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE Robotics and Automation Society, 2012, s. 255-261Konferensbidrag (Refereegranskat)
    Abstract [en]

    Reducing the number of cables needed for the actuators and sensors of humanoid and other robots with high numbers of degrees of freedom (DoF) is a relevant problem, often solved by using a common bus for all communication, which may result in bandwidth limitation problems. This paper proposes an optimized method to re-order the commands sent to the joint-local controllers of a high DoF serial manipulator. The proposed method evaluates which local controller would benefit the most from an updated command given a cost function, and sends a command to this controller. As is demonstrated in both simulation and in experiments on a real robot, the resulting scheme can significantly improve system performance, equivalent to increasing the communication frequency by up to 3 times.

  • 49.
    Vina, Francisco
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Pauwels, Karl
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    In-hand manipulation using gravity and controlled slip2015Ingår i: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, IEEE conference proceedings, 2015, s. 5636-5641Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this work we propose a sliding mode controllerfor in-hand manipulation that repositions a tool in the robot’shand by using gravity and controlling the slippage of the tool. In our approach, the robot holds the tool with a pinch graspand we model the system as a link attached to the grippervia a passive revolute joint with friction, i.e., the grasp onlyaffords rotational motions of the tool around a given axis ofrotation. The robot controls the slippage by varying the openingbetween the fingers in order to allow the tool to move tothe desired angular position following a reference trajectory.We show experimentally how the proposed controller achievesconvergence to the desired tool orientation under variations ofthe tool’s inertial parameters.

  • 50.
    Vina, Francisco
    et al.
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Smith, Christian
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP. KTH, Skolan för datavetenskap och kommunikation (CSC), Centra, Centrum för Autonoma System, CAS.
    Kragic, Danica
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Karayiannidis, Yiannis
    KTH, Skolan för datavetenskap och kommunikation (CSC), Datorseende och robotik, CVAP.
    Adaptive Contact Point Estimation for Autonomous Tool Manipulation2014Konferensbidrag (Refereegranskat)
    Abstract [en]

    Autonomous grasping and manipulation of toolsenables robots to perform a large variety of tasks in unstructuredenvironments such as households. Many commonhousehold tasks involve controlling the motion of the tip of a toolwhile it is in contact with another object. Thus, for these types oftasks the robot requires knowledge of the location of the contactpoint while it is executing the task in order to accomplish themanipulation objective. In this work we propose an integraladaptive control law that uses force/torque measurements toestimate online the location of the contact point between thetool manipulated by the robot and the surface which the tooltouches

12 1 - 50 av 58
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf