Change search
Refine search result
123 1 - 50 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Arner, P.
    et al.
    Henjes, Frauke
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Darmanis, Spyros N.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Dahlman, I.
    Iresjö, B. -M
    Naredi, P.
    Agustsson, T.
    Lundholm, K.
    Nilsson, Peter M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rydén, M.
    Circulating Carnosine Dipeptidase 1 associates with weight loss and poor prognosis in gastrointestinal cancer2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 4, article id e0123566Article in journal (Refereed)
    Abstract [en]

    Background: Cancer cachexia (CC) is linked to poor prognosis. Although the mechanisms promoting this condition are not known, several circulating proteins have been proposed to contribute. We analyzed the plasma proteome in cancer subjects in order to identify factors associated with cachexia. Design/Subjects: Plasma was obtained from a screening cohort of 59 patients, newly diagnosed with suspected gastrointestinal cancer, with (n = 32) or without (n = 27) cachexia. Samples were subjected to proteomic profiling using 760 antibodies (targeting 698 individual proteins) from the Human Protein Atlas project. The main findings were validated in a cohort of 93 patients with verified and advanced pancreas cancer. Results: Only six proteins displayed differential plasma levels in the screening cohort. Among these, Carnosine Dipeptidase 1 (CNDP1) was confirmed by sandwich immunoassay to be lower in CC (p = 0.008). In both cohorts, low CNDP1 levels were associated with markers of poor prognosis including weight loss, malnutrition, lipid breakdown, low circulating albumin/IGF1 levels and poor quality of life. Eleven of the subjects in the discovery cohort were finally diagnosed with non-malignant disease but omitting these subjects from the analyses did not have any major influence on the results. Conclusions: In gastrointestinal cancer, reduced plasma levels of CNDP1 associate with signs of catabolism and poor outcome. These results, together with recently published data demonstrating lower circulating CNDP1 in subjects with glioblastoma and metastatic prostate cancer, suggest that CNDP1 may constitute a marker of aggressive cancer and CC.

  • 2. Asplund, A.
    et al.
    Edqvist, P. -HD.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research2012In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 12, no 13, p. 2067-2077Article in journal (Refereed)
    Abstract [en]

    In this review, we present an update on the progress of the Human Protein Atlas, with an emphasis on strategies for validating immunohistochemistry-based protein expression patterns and on the possibilities to extend the map of protein expression patterns for cancer research projects. The objectives underlying the Human Protein Atlas include (i) the generation of validated antibodies toward a major isoform of all proteins encoded by the human genome, (ii) creating an information database of protein expression patterns in normal human tissues, in cells, and in cancer, and (iii) utilizing generated antibodies and protein expression data as tools to identify clinically useful biomarkers. The success of such an effort is dependent on the validity of antibodies as specific binders of intended targets in applications used to map protein expression patterns. The development of strategies to support specific target binding is crucial and remains a challenge as a large fraction of proteins encoded by the human genome is poorly characterized, including the approximately one-third of all proteins lacking evidence of existence. Conceivable methods for validation include the use of paired antibodies, i.e. two independent antibodies targeting different and nonoverlapping epitopes on the same protein as well as comparative analysis of mRNA expression patterns with corresponding proteins.

  • 3.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Birgersson, Elin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mezger, Anja
    Nilsson, Mats
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Multiplexed protein profiling by sequential affinity capture2016In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 16, no 8, p. 1251-1256Article in journal (Refereed)
    Abstract [en]

    Antibody microarrays enable parallelized and miniaturized analysis of clinical samples, and have proven to provide novel insights for the analysis of different proteomes. However, there are concerns that the performance of such direct labeling and single antibody assays are prone to off-target binding due to the sample context. To improve selectivity and sensitivity while maintaining the possibility to conduct multiplexed protein profiling, we developed a multiplexed and semi-automated sequential capture assay. This novel bead-based procedure encompasses a first antigen capture, labeling of captured protein targets on magnetic particles, combinatorial target elution and a read-out by a secondary capture bead array. We demonstrate in a proof-of-concept setting that target detection via two sequential affinity interactions reduced off-target contribution, while lowered background and noise levels, improved correlation to clinical values compared to single binder assays. We also compared sensitivity levels with single binder and classical sandwich assays, explored the possibility for DNA-based signal amplification, and demonstrate the applicability of the dual capture bead-based antibody microarray for biomarker analysis. Hence, the described concept enhances the possibilities for antibody array assays to be utilized for protein profiling in body fluids and beyond.

  • 4.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Chaouch, Amina
    Lochmüller, Hanns
    Politano, Luisa
    Bertini, Enrico
    Spitali, Pietro
    Hiller, Monika
    Niks, Eric H.
    Gualandi, Francesca
    Pontén, Fredrik
    Bushby, Kate
    Aartsma-Rus, Annemieke
    Schwartz, Elena
    Le Priol, Yannick
    Straub, Volker
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Cirak, Sebahattin
    't Hoen, Peter A. C.
    Muntoni, Francesco
    Ferlini, Alessandra
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Szigyarto, Cristina Al-Khalili
    Affinity proteomics within rare diseases: a BIO-NMD study for blood biomarkers of muscular dystrophies2014In: EMBO Molecular Medicine, ISSN 1757-4676, E-ISSN 1757-4684, Vol. 6, no 7, p. 918-936Article in journal (Refereed)
    Abstract [en]

    Despite the recent progress in the broad-scaled analysis of proteins in body fluids, there is still a lack in protein profiling approaches for biomarkers of rare diseases. Scarcity of samples is the main obstacle hindering attempts to apply discovery driven protein profiling in rare diseases. We addressed this challenge by combining samples collected within the BIO-NMD consortium from four geographically dispersed clinical sites to identify protein markers associated with muscular dystrophy using an antibody bead array platform with 384 antibodies. Based on concordance in statistical significance and confirmatory results obtained from analysis of both serum and plasma, we identified eleven proteins associated with muscular dystrophy, among which four proteins were elevated in blood from muscular dystrophy patients: carbonic anhydrase III (CA3) and myosin light chain 3 (MYL3), both specifically expressed in slow-twitch muscle fibers and mitochondrial malate dehydrogenase 2 (MDH2) and electron transfer flavo-protein A (ETFA). Using age-matched sub-cohorts, 9 protein profiles correlating with disease progression and severity were identified, which hold promise for the development of new clinical tools for management of dystrophinopathies.

  • 5.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häggmark, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Khademi, M.
    Olsson, T.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Autoantibody profiling in multiple sclerosis using arrays of human protein fragments2013In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 12, no 9, p. 2657-2672Article in journal (Refereed)
    Abstract [en]

    Profiling the autoantibody repertoire with large antigen collections is emerging as a powerful tool for the identification of biomarkers for autoimmune diseases. Here, a systematic and undirected approach was taken to screen for profiles of IgG in human plasma from 90 individuals with multiple sclerosis related diagnoses. Reactivity pattern of 11,520 protein fragments (representing ̃38% of all human protein encoding genes) were generated on planar protein microarrays built within the Human Protein Atlas. For more than 2,000 antigens IgG reactivity was observed, among which 64% were found only in single individuals. We used reactivity distributions among multiple sclerosis subgroups to select 384 antigens, which were then reevaluated on planar microarrays, corroborated with suspension bead arrays in a larger cohort (n = 376) and confirmed for specificity in inhibition assays. Among the heterogeneous pattern within and across multiple sclerosis subtypes, differences in recognition frequencies were found for 51 antigens, which were enriched for proteins of transcriptional regulation. In conclusion, using protein fragments and complementary high-throughput protein array platforms facilitated an alternative route to discovery and verification of potentially disease-associated autoimmunity signatures, that are now proposed as additional antigens for large-scale validation studies across multiple sclerosis biobanks.

  • 6.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Häggmark, Anna
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Igel, Ulrika
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Schwenk, Jochen
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Systematic antibody and antigen-based proteomic profiling with microarrays2011In: EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, ISSN 1473-7159, Vol. 11, no 2, p. 219-234Article, review/survey (Refereed)
    Abstract [en]

    Current approaches within affinity-based proteomics are driven both by the accessibility and availability of antigens and capture reagents, and by suitable multiplexed technologies onto which these are implemented. By combining planar microarrays and other multiparallel systems with sets of reagents, possibilities to discover new and unpredicted protein disease associations, either via directed hypothesis-driven or via undirected hypothesis-generating target selection, can be created. In the following stages, the discoveries made during these screening phases have to be verified for potential clinical relevance based on both technical and biological aspects. The use of affinity tools throughout discovery and verification has the potential to streamline the introduction of new markers, as transition into clinically required assay formats appears straightforward. In this article, we summarize some of the current building blocks within array-and affinity-based proteomic profiling with a focus on body fluids, by giving a perspective on how current and upcoming developments in this bioscience could enable a path of pursuit for biomarker discovery.

  • 7.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mitsios, N.
    Khademi, M.
    Alfredsson, L.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mulder, J.
    Olsson, T.
    Schwenk, Jochen
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Anoctamin 2, a novel autoimmune target candidate in multiple sclerosis2014In: Multiple Sclerosis, ISSN 1352-4585, E-ISSN 1477-0970, Vol. 20, p. 49-50Article in journal (Other academic)
  • 8.
    Ayoglu, Burcu
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mitsios, Nicholas
    Kockum, Ingrid
    Khademi, Mohsen
    Zandian, Arash
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjoberg, Ronald
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsstrom, Bjorn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bredenberg, Johan
    Bomfim, Izaura Lima
    Holmgren, Erik
    Gronlund, Hans
    Guerreiro-Cacais, Andre Ortlieb
    Abdelmagid, Nada
    Uhlen, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Waterboer, Tim
    Alfredsson, Lars
    Mulder, Jan
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, Tomas
    Nilsson, Peter
    Anoctamin 2 identified as an autoimmune target in multiple sclerosis2016In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 8, p. 2188-2193Article in journal (Refereed)
    Abstract [en]

    Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system and also is regarded as an autoimmune condition. However, the antigenic targets of the autoimmune response in MS have not yet been deciphered. In an effort to mine the autoantibody repertoire within MS, we profiled 2,169 plasma samples from MS cases and population-based controls using bead arrays built with 384 human protein fragments selected from an initial screening with 11,520 antigens. Our data revealed prominently increased autoantibody reactivity against the chloride-channel protein anoctamin 2 (ANO2) in MS cases compared with controls. This finding was corroborated in independent assays with alternative protein constructs and by epitope mapping with peptides covering the identified region of ANO2. Additionally, we found a strong interaction between the presence of ANO2 autoantibodies and the HLA complex MS-associated DRB1*15 allele, reinforcing a potential role for ANO2 autoreactivity in MS etiopathogenesis. Furthermore, immunofluorescence analysis in human MS brain tissue showed ANO2 expression as small cellular aggregates near and inside MS lesions. Thus this study represents one of the largest efforts to characterize the autoantibody repertoire within MS. The findings presented here demonstrate that an ANO2 autoimmune subphenotype may exist in MS and lay the groundwork for further studies focusing on the pathogenic role of ANO2 autoantibodies in MS.

  • 9.
    Ayoglu, Burcu
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Multiplexed antigen bead arrays for the assessment of antibody selectivity and epitope mapping2018In: Epitope Mapping Protocols, Humana Press Inc. , 2018, p. 239-248Chapter in book (Refereed)
    Abstract [en]

    With the increasing number of binding reagents for affinity-based investigations of the human proteome, high-throughput tools for the characterization of the used reagents become essential. For the analysis of binding selectivity, bead-based antigen arrays offer a miniaturized and parallelized assay platform to meet such needs, as they enable two-dimensional multiplexing to analyze up to 384 samples against up to 500 analytes in a single round of analysis. In this chapter, we describe our protocols for the generation of multiplex bead arrays built on immobilized protein fragments, as well as biotinylated peptides. Combined together, these two versions of antigen arrays offer a versatile approach for multiplexed characterization of antibody binding selectivity, off-target interactions, as well as mapping for the amino acids of epitopes involved in antibody binding.

  • 10.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Antigen arrays for profiling autoantibody repertoires2016In: Bioanalysis, ISSN 1757-6180, E-ISSN 1757-6199, Vol. 8, no 10, p. 1105-1126Article, review/survey (Refereed)
    Abstract [en]

    Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.

  • 11.
    Ayoglu, Burcu
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sjöberg, Ronald
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    et al.,
    The calcium-activated chloride channel anoctamine 2 as an autoimmune component of multiple sclerosisManuscript (preprint) (Other academic)
  • 12.
    Bachmann, Julie
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Burte, Florence
    Pramana, Setia
    Conte, Ianina
    Brown, Biobele J.
    Orimadegun, Adebola E.
    Ajetunmobi, Wasiu A.
    Afolabi, Nathaniel K.
    Akinkunmi, Francis
    Omokhodion, Samuel
    Akinbami, Felix O.
    Shokunbi, Wuraola A.
    Kampf, Caroline
    Pawitan, Yudi
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sodeinde, Olugbemiro
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Wahlgren, Mats
    Fernandez-Reyes, Delmiro
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria2014In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 10, no 4, p. e1004038-Article in journal (Refereed)
    Abstract [en]

    Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria.

  • 13. Bergström, Jonas P.
    et al.
    Gry, Marcus
    Lengqvist, Johan
    Lindberg, Johan
    Schwenk, Jochen
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Watkins, Paul B.
    Schuppe Koistinen, Ina
    Novel DILI biomarkers for prediction of acetaminophen-induced human hepatotoxicity2012In: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 211, p. S76-S76Article in journal (Other academic)
  • 14. Bruzelius, M.
    et al.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Sanchez-Rivera, Laura
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gyorgy, B.
    Souto, J. C.
    Franberg, M.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Strawbridge, R. J.
    Holmström, M.
    Hamsten, A.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Silveira, A.
    Soria, J. M.
    Smadja, D. M.
    Butler, L. M.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Morange, P. -E
    Trégouët, D. -A
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska University Hospital, Sweden; Karolinska Institutet, Sweden.
    PDGFB, a new candidate plasma biomarker for venous thromboembolism: Results from the VEREMA affinity proteomics study2016In: Blood, ISSN 0006-4971, E-ISSN 1528-0020, Vol. 128, no 23, p. e59-e66Article in journal (Refereed)
    Abstract [en]

    There is a clear clinical need for high-specificity plasma biomarkers for predicting risk of venous thromboembolism (VTE), but thus far, such markers have remained elusive. Utilizing affinity reagents from the Human Protein Atlas project and multiplexed immuoassays, we extensively analyzed plasma samples from 2 individual studies to identify candidate protein markers associated with VTE risk. We screened plasma samples from 88 VTE cases and 85 matched controls, collected as part of the Swedish ¡°Venous Thromboembolism Biomarker Study,¡± using suspension bead arrays composed of 755 antibodies targeting 408 candidate proteins. We identified significant associations between VTE occurrence and plasma levels of human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1), von Willebrand factor (VWF), glutathione peroxidase 3 (GPX3), and platelet-derived growth factor β (PDGFB). For replication, we profiled plasma samples of 580 cases and 589 controls from the French FARIVE study. These results confirmed the association of VWF and PDGFB with VTE after correction for multiple testing, whereas only weak trends were observed for HIVEP1 and GPX3. Although plasma levels of VWF and PDGFB correlated modestly (p ~ 0.30) with each other, they were independently associated with VTE risk in a joint model in FARIVE (VWF P < .001; PDGFB P 5 .002). PDGF was verified as the target of the capture antibody by immunocapture mass spectrometry and sandwich enzyme-linked immunosorbent assay. In conclusion, we demonstrate that high-throughput affinity plasma proteomic profiling is a valuable research strategy to identify potential candidate biomarkers for thrombosis-related disorders, and our study suggests a novel association of PDGFB plasma levels with VTE.

  • 15. Bruzelius, M.
    et al.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tregouet, D. A.
    Souto, J. C.
    Holmström, M.
    Frånberg, M.
    Strawbridge, R. J.
    Sabater-Lleal, M.
    Sennblad, B.
    Silveira, A.
    Soria, J. M.
    Morange, P. E.
    Butler, L.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamsten, A.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Verema - an affinity proteomics study to identify and translate plasma biomarkers for venous thromboembolism2015In: Journal of Thrombosis and Haemostasis, ISSN 1538-7933, E-ISSN 1538-7836, Vol. 13, p. 954-954Article in journal (Refereed)
  • 16.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ayoglu, Burcu
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häggmark, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kim
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    et al.,
    Affinity Proteomic Profiling of Plasma, Cerebrospinal Fluid, and Brain Tissue within Multiple Sclerosis2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 11, p. 4607-4619Article in journal (Refereed)
    Abstract [en]

    The brain is a vital organ and because it is well shielded from the outside environment, possibilities for noninvasive analysis are often limited. Instead, fluids taken from the spinal cord or circulatory system are preferred sources for the discovery of candidate markers within neurological diseases. In the context of multiple sclerosis (MS), we applied an affinity proteomic strategy and screened 22 plasma samples with 4595 antibodies (3450 genes) on bead arrays, then defined 375 antibodies (334 genes) for targeted analysis in a set of 172 samples and finally used 101 antibodies (43 genes) on 443 plasma as well as 573 cerebrospinal spinal fluid (CSF) samples. This revealed alteration of protein profiles in relation to MS subtypes for IRF8, IL7, METTL14, SLC30A7, and GAP43. Respective antibodies were subsequently used for immunofluorescence on human post-mortem brain tissue with MS pathology for expression and association analysis. There, antibodies for IRF8, IL7, and METTL14 stained neurons in proximity of lesions, which highlighted these candidate protein targets for further studies within MS and brain tissue. The affinity proteomic translation of profiles discovered by profiling human body fluids and tissue provides a powerful strategy to suggest additional candidates to studies of neurological disorders.

  • 17.
    Byström, Sanna
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Eklund, Martin
    Hong, Mun-Gwan
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Fredolini, Claudia
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Eriksson, Mikael
    Czene, Kamila
    Hall, Per
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO).
    Gabrielson, Marike
    Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density2018In: Breast Cancer Research, ISSN 1465-5411, E-ISSN 1465-542X, Vol. 20, article id 14Article in journal (Refereed)
    Abstract [en]

    Background: Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Methods: Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Results: Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD. Conclusions: Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.

  • 18.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Eklund, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Eriksson, Mikael
    Czene, Kamila
    Hall, Per
    Schwenk, Jochen. M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Gabrielson, Marike
    Affinity proteomic profiling of plasma for proteins associated to mammographic breast densityManuscript (preprint) (Other academic)
  • 19.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edqvist, P. -H
    Nyaiesh, Etienne-Nicholas
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Bergqvist, M.
    Pontén, F.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Affinity Proteomics Exploration of Melanoma Identifies Proteins in Serum with Associations to T-Stage and Recurrence2017In: Translational Oncology, ISSN 1944-7124, E-ISSN 1936-5233, Vol. 10, no 3, p. 385-395Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Blood-based proteomic profiling may aid and expand our understanding of diseases and their different phenotypes. The aim of the presented study was to profile serum samples from patients with malignant melanoma using affinity proteomic assays to describe proteins in the blood stream that are associated to stage or recurrence of melanoma. MATERIAL AND METHODS: Multiplexed protein analysis was conducted using antibody suspension bead arrays. A total of 232 antibodies against 132 proteins were selected from (i) a screening with 4595 antibodies and 32 serum samples from melanoma patients and controls, (ii) antibodies used for immunohistochemistry, (iii) protein targets previously related with melanoma. The analysis was performed with 149 serum samples from patients with malignant melanoma. Antibody selectivity was then assessed by Western blot, immunocapture mass spectrometry, and epitope mapping. Lastly, indicative antibodies were applied for IHC analysis of melanoma tissues. RESULTS: Serum levels of regucalcin (RGN) and syntaxin 7 (STX7) were found to be lower in patients with both recurring tumors and a high Breslow's thickness (T-stage 3/4) compared to low thickness (T-stage 1/2) without disease recurrence. Serum levels of methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) were instead elevated in sera of T3/4 patients with recurrence. The analysis of tissue sections with S100A6 and MTHFD1L showed positive staining in a majority of patients with melanoma, and S100A6 was significantly associated to T-stage. CONCLUSIONS: Our findings provide a starting point to further study RGN, STX7, MTHFD1L and S100A6 in serum to elucidate their involvement in melanoma progression and to assess a possible contribution to support clinical indications.

  • 20.
    Byström, Sanna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Edqvist, Per-Henrik
    Nyaiesh, Etienne-Nicholas
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Matthias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Bergqvist, Michael
    Pontén, Fredrik
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Affinity proteomics exploration of melanoma identifies proteins in serum with associations to T-stage and recurrenceManuscript (preprint) (Other academic)
  • 21. Chen, Ziqing
    et al.
    Dodig-Crnkovic, Tea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tao, Sheng-ce
    Current applications of antibody microarrays2018In: Clinical Proteomics, ISSN 1542-6416, E-ISSN 1559-0275, Vol. 15, article id 7Article, review/survey (Refereed)
    Abstract [en]

    The concept of antibody microarrays is one of the most versatile approaches within multiplexed immunoassay technologies. These types of arrays have increasingly become an attractive tool for the exploratory detection and study of protein abundance, function, pathways, and potential drug targets. Due to the properties of the antibody microarrays and their potential use in basic research and clinical analytics, various types of antibody microarrays have already been developed. In spite of the growing number of studies utilizing this technique, few reviews about antibody microarray technology have been presented to reflect the quality and future uses of the generated data. In this review, we provide a summary of the recent applications of antibody microarray techniques in basic biology and clinical studies, providing insights into the current trends and future of protein analysis.

  • 22. Colwill, Karen
    et al.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Sundberg, Mårten
    KTH, School of Biotechnology (BIO), Proteomics.
    Sjöberg, Ronald
    KTH, School of Biotechnology (BIO), Proteomics.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics.
    Schwenk, Jochen M
    KTH, School of Biotechnology (BIO), Proteomics.
    Ottosson Takanen, Jenny
    KTH, School of Biotechnology (BIO), Proteomics.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Gräslund, Susanne
    et, al.
    A roadmap to generate renewable protein binders to the human proteome2011In: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 8, no 7, p. 551-8Article in journal (Refereed)
    Abstract [en]

    Despite the wealth of commercially available antibodies to human proteins, research is often hindered by their inconsistent validation, their poor performance and the inadequate coverage of the proteome. These issues could be addressed by systematic, genome-wide efforts to generate and validate renewable protein binders. We report a multicenter study to assess the potential of hybridoma and phage-display technologies in a coordinated large-scale antibody generation and validation effort. We produced over 1,000 antibodies targeting 20 SH2 domain proteins and evaluated them for potency and specificity by enzyme-linked immunosorbent assay (ELISA), protein microarray and surface plasmon resonance (SPR). We also tested selected antibodies in immunoprecipitation, immunoblotting and immunofluorescence assays. Our results show that high-affinity, high-specificity renewable antibodies generated by different technologies can be produced quickly and efficiently. We believe that this work serves as a foundation and template for future larger-scale studies to create renewable protein binders.

  • 23. Danielsson, Angelika
    et al.
    Pontén, Fredrik
    Fagerberg, Linn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Korsgren, Olle
    Lindskog, Cecilia
    The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 12, p. e115421-Article in journal (Refereed)
    Abstract [en]

    The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects.

  • 24. Darmanis, Spyros
    et al.
    Cui, Tao
    Drobin, Kimi
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Li, Su-Chen
    Öberg, Kjell
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Giandomenico, Valeria
    Identification of Candidate Serum Proteins for Classifying Well-Differentiated Small Intestinal Neuroendocrine Tumors2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 11, p. e81712-Article in journal (Refereed)
    Abstract [en]

    Background: Patients with well-differentiated small intestine neuroendocrine tumors (WD-SI-NETs) are most often diagnosed at a metastatic stage of disease, which reduces possibilities for a curative treatment. Thus new approaches for earlier detection and improved monitoring of the disease are required. Materials and Methods: Suspension bead arrays targeting 124 unique proteins with antibodies from the Human Protein Atlas were used to profile biotinylated serum samples. Discoveries from a cohort of 77 individuals were followed up in a cohort of 132 individuals both including healthy controls as well as patients with untreated primary WD-SI-NETs, lymph node metastases and liver metastases. Results: A set of 20 antibodies suggested promising proteins for further verification based on technically verified statistical significance. Proceeding, we assessed the classification performance in an independent cohort of patient serum, achieving, classification accuracy of up to 85% with different subsets of antibodies in respective pairwise group comparisons. The protein profiles of nine targets, namely IGFBP2, IGF1, SHKBP1, ETS1, IL1 alpha, STX2, MAML3, EGR3 and XIAP were verified as significant contributors to tumor classification. Conclusions: We propose new potential protein biomarker candidates for classifying WD-SI-NETs at different stage of disease. Further evaluation of these proteins in larger sample sets and with alternative approaches is needed in order to further improve our understanding of their functional relation to WD-SI-NETs and their eventual use in diagnostics.

  • 25.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology.
    Redin, David
    KTH, School of Biotechnology (BIO), Protein Technology.
    Borgström, Erik
    KTH, School of Biotechnology (BIO), Gene Technology.
    Edfors, Fredrik
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology.
    Droplet-based Immuno-Sequencing to Deconvolute Affinity Recognition EventsManuscript (preprint) (Other academic)
  • 26.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vickovic, Sanja
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Magnetic bead assisted labeling of antibodies at nanogram scale2014In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 14, no 1, p. 14-18Article in journal (Refereed)
    Abstract [en]

    There are currently several initiatives that aim to produce binding reagents for proteome-wide analysis. To enable protein detection, visualization, and target quantification, covalent coupling of reporter molecules to antibodies is essential. However, current labeling protocols recommend considerable amount of antibodies, require antibody purity and are not designed for automation. Given that small amounts of antibodies are often sufficient for downstream analysis, we developed a labeling protocol that combines purification and modification of antibodies at submicrogram quantities. With the support of magnetic microspheres, automated labeling of antibodies in parallel using biotin or fluorescent dyes was achieved.

  • 27.
    Dezfouli, Mahya
    et al.
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Vickovic, Sanja
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ahmadian, Afshin
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Parallel barcoding of antibodies for DNA-assisted proteomics2014In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 14, no 21-22, p. 2432-2436Article in journal (Refereed)
    Abstract [en]

    DNA-assisted proteomics technologies enable ultra-sensitive measurements in multiplex format using DNA-barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio-conjugation protocols. Here, we introduce a magnetic bead-assisted DNA-barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand-fold. The success of DNA-barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno-PCR assays. Specific DNA-barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read-out on a massively parallel sequencing platform in a procedure denoted Immuno-Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications.

  • 28. Djureinovic, D.
    et al.
    Dodig-Crnkovic, Tea
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hellström, Cecilia
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics.
    Holgersson, G.
    Bergqvist, M.
    Mattsson, J. S. M.
    Pontén, F.
    Ståhle, E.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics.
    Micke, P.
    Detection of autoantibodies against cancer-testis antigens in non-small cell lung cancer2018In: Lung Cancer, ISSN 0169-5002, E-ISSN 1872-8332, Vol. 125, p. 157-163Article in journal (Refereed)
    Abstract [en]

    Objectives: Cancer-testis antigens (CTAs) are defined as proteins that are specifically expressed in testis or placenta and their expression is frequently activated in cancer. Due to their ability to induce an immune response, CTAs may serve as suitable targets for immunotherapy. The aim of this study was to evaluate if there is reactivity against CTAs in the plasma of non-small cell lung cancer (NSCLC) patients through the detection of circulating antibodies. Materials and methods: To comprehensively analyze autoantibodies against CTAs the multiplexing capacities of suspension bead array technology was used. Bead arrays were created with 120 protein fragments, representing 112 CTAs. Reactivity profiles were measured in plasma samples from 133 NSCLC patients and 57 cases with benign lung diseases. Results: Altogether reactivity against 69 antigens, representing 81 CTAs, was demonstrated in at least one of the analyzed samples. Twenty-nine of the antigens (45 CTAs) demonstrated exclusive reactivity in NSCLC samples. Reactivity against cancer-testis antigen family 47; member A (CT47A) genes, P antigen family member 3 (PAGE3), variable charge X-linked (VCX), melanoma antigen family B1 (MAGEB1), lin-28 homolog B (LIN28B) and chromosome 12 open reading frame 54 (C12orf54) were only found in NSCLC patients at a frequency of 1%–4%. The presence of autoantibodies towards these six antigens was confirmed in an independent group of 34 NSCLC patients. Conclusion: We identified autoantibodies against CTAs in the plasma of lung cancer patients. The reactivity pattern of autoantibodies was higher in cancer patients compared to the benign group, stable over time, but low in frequency of occurrence. The findings suggest that some CTAs are immunogenic and that these properties can be utilized as immune targets. 

  • 29.
    Drobin, Kimi
    et al.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Affinity Proteomics.
    Assadi, Ghazaleh
    Hong, Mun-Gwan
    Andersson, Eni
    Fredolini, Claudia
    Forsström, Björn
    Reznichenko, Anna
    Akhter, Tahmina
    Ek, Weronica
    Bonfiglio, Ferdinando
    Berner Hansen, Mark
    Sandberg, Kristian
    Greco, Dario
    Repsilber, Dirk
    Schwenk, Jochen
    D'Amato, Mauro
    Halfvarson, Jonas
    Targeted analysis of serum proteins encoded at known inflammatory bowel disease risk lociManuscript (preprint) (Other academic)
  • 30.
    Drobin, Kimi
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Highly multiplexed antibody suspension bead arrays for plasma protein profiling2013In: Methods in Molecular Biology, ISSN 1064-3745, E-ISSN 1940-6029, Vol. 1023, p. 137-145Article in journal (Refereed)
    Abstract [en]

    Alongside the increasing availability of affinity reagents, antibody microarrays have become a powerful tool to screen for target proteins in complex samples. Applying directly labeled samples onto arrays instead of using sandwich assays offers an approach to facilitate a systematic, high-throughput, and flexible exploration of protein profiles in body fluids such as serum or plasma. As an alternative to planar arrays, a system based on color-coded beads for the creation of antibody arrays in suspension has become available to offer a microtiter plate-based option for screening larger number of samples with variable sets of capture reagents. A procedure was established for analyzing biotinylated samples without the necessity to remove excess labeling substance. We have shown that this assay system allows detecting proteins down into lower pico-molar and higher pg/ml levels with dynamic ranges over three orders of magnitude. Presently, this workflow enables the profiling of 384 samples for up to 384 proteins per assay.

  • 31.
    Edfors, Fredrik
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fredolini, Claudia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Boström, Tove
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Atlas Antibodies AB.
    Maddalo, Gianluca
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Svensson, Anne-Sophie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Jochen, Schwenk
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. Technical University of Denmark, Denmark.
    A recombinant protein standard resource for targeted proteomicsManuscript (preprint) (Other academic)
    Abstract [en]

    Here, we have used a resource of 26,000 recombinant protein fragments to create custom libraries of standards for targeted proteomics based on parallel reaction monitoring (PRM). The recombinant fragments can be produced in a bacterial cell factory to generate heavy isotope labeled standards for absolute quantification of the corresponding protein targets and be used to produce high- quality spectral libraries. Altogether, coordinates for 25,684 unique proteotypic peptide assays have been experimentally defined covering 10,163 human proteins. The protocol allows for precise monitoring of digestion kinetics and thus enables to select peptides that behave quantitative during the sample preparation process. We show that the quantification tag of each recombinant protein fragment can be used for accurate retention time prediction and allows for assay standardization across different method parameters. The use of this resource was illustrated by determining the absolute concentrations of selected protein targets using multiplex targeted proteomics assays for determination of quantitative assessment of 49 protein targets in serum samples. 

  • 32.
    Eriksson, Cecilia
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Sjöberg, A.
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics.
    Affibody molecule mediated depletion of HSA and IgG performed in singlet or in a rapid high throughput format2009Article in journal (Other academic)
  • 33.
    Eriksson, Cecilia
    et al.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Sjöberg, Anna
    KTH, School of Biotechnology (BIO).
    Hober, Sophia
    KTH, School of Biotechnology (BIO), Proteomics (closed 20130101).
    Affibody molecule-mediated depletion of HSA and IgG using different buffer compositions: a 15 min protocol for parallel processing of 1-48 samples2010In: Biotechnology and applied biochemistry, ISSN 0885-4513, E-ISSN 1470-8744, Vol. 56, p. 49-57Article in journal (Refereed)
    Abstract [en]

    High-abundant plasma proteins pose a challenge in a large number of proteomics-based technologies. Depletion of these high-abundant proteins has proven to be a fruitful strategy to circumvent masking of lower-abundant proteins that could serve as valuable biomarker candidates. However, current strategies often do not meet the throughput requirements of large-scale proteomic studies. In the present paper, a flexible and parallelized method for the depletion of high-abundant proteins is described, allowing the removal of the two most abundant proteins from 48 blood-derived samples in less than 15 min using Affibody molecules as affinity ligands. A sample-processing platform like this should be suitable for a number of proteomics technologies; its flexibility in buffer composition allows for different types of downstream applications.

  • 34.
    Fagerberg, Linn
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hallström, Björn M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Djureinovic, D.
    Odeberg, Jacob
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Habuka, Masato
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tahmasebpoor, S.
    Danielsson, A.
    Edlund, K.
    Asplund, A.
    Sjöstedt, E.
    Lundberg, E.
    Szigyarto, Cristina Al-Khalili
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ottosson Takanen, J.
    Berling, H.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Mulder, J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lindskog, C.
    Danielsson, Frida
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mardinoglu, A.
    Sivertsson, Åsa
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Forsberg, Mattias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Olsson, I.
    Navani, S.
    Huss, Mikael
    Nielsen, Jens
    KTH, School of Biotechnology (BIO), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics2014In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 13, no 2, p. 397-406Article in journal (Refereed)
    Abstract [en]

    Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody- based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to 80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.

  • 35.
    Fagerberg, Linn
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Oksvold, Per
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Skogs, Marie
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Älgenäs, C.
    Lundberg, Emma
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pontén, F.
    Sivertsson, Åsa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Odeberg, Jacob
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Klevebring, Daniel
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kampf, C.
    Asplund, A.
    Sjöstedt, E.
    Al-Khalili Szigyarto, C.
    Edqvist, P. -H
    Olsson, I.
    Rydberg, U.
    Hudson, P.
    Ottosson Takanen, J.
    Berling, H.
    Björling, Lisa
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tegel, Hanna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Rockberg, J.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Navani, S.
    Jirström, K.
    Mulder, J.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Zwahlen, Martin
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hober, Sophia
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsberg, Mattias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Von Feilitzen, Kalle
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Contribution of antibody-based protein profiling to the human chromosome-centric proteome project (C-HPP)2013In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 12, no 6, p. 2439-2448Article in journal (Refereed)
    Abstract [en]

    A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas (www.proteinatlas.org).

  • 36.
    Fredolini, Claudia
    et al.
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Byström, Sanna
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Pin, Elisa
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Edfors, Fredrik
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Tamburro, Davide
    Iglesias, Maria Jesus
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Häggmark, Anna
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO). KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Immunocapture strategies in translational proteomics2016In: Expert Review of Proteomics, ISSN 1478-9450, E-ISSN 1744-8387, Vol. 13, no 1, p. 83-98Article, review/survey (Refereed)
    Abstract [en]

    Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.

  • 37.
    Gantelius, Jesper
    et al.
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Hartmann, Michael
    KTH, School of Chemical Science and Engineering (CHE), Chemistry, Analytical Chemistry.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Roeraade, Johan
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Joos, Thomas O
    Magnetic bead-based detection of autoimmune responses using protein microarrays.2009In: New biotechnology, ISSN 1871-6784, Vol. 26, p. 269-276Article in journal (Refereed)
    Abstract [en]

    In the present study, a magnetic bead-based detection approach for protein microarrays is described as an alternative approach to the commonly used fluorescence-based detection system. Using the bead-based detection approach with applied magnetic force, it was possible to perform the detection step more rapidly as a result of the accelerated binding between the captured analyte in the microspot and the detection antibody, which was coupled to the magnetic beads. The resulting strong opacity shift on the microspots could be recorded with an ordinary flatbed scanner. In the context of autoimmunity, a set of 24 serum samples was analyzed for the presence of antibodies against 12 autoantigens using standard fluorescence and magnetic bead-based detection methods. Dynamic range, sensitivity, and specificity were determined for both detection methods. We propose from our findings that the magnetic bead-based detection option provides a simplified and cost effective readout method for protein microarrays.

  • 38.
    Gantelius, Jesper
    et al.
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Nystrand, M.
    Harlin, A.
    Elfverson, G.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Uhlén, Mattias
    KTH, School of Biotechnology (BIO), Proteomics.
    Eriksson-Karlström, Amelie
    KTH, School of Biotechnology (BIO).
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Evaluation of a lateral flow microarray assay systemArticle in journal (Other academic)
  • 39.
    Gantelius, Jesper
    et al.
    KTH, School of Biotechnology (BIO), Nano Biotechnology.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Hamsten, Carl
    KTH, School of Biotechnology (BIO).
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Andersson-Svahn, Helene
    KTH, School of Biotechnology (BIO).
    A lateral flow protein microarray for rapid determination of contagious bovine pleuropneumonia status in bovine serum2010In: Journal of Microbiological Methods, ISSN 0167-7012, E-ISSN 1872-8359, Vol. 82, no 1, p. 11-18Article in journal (Refereed)
    Abstract [en]

    Novel analytical methods for a next generation of diagnostic devices combine attributes from sensitive, accurate, fast, simple and multiplexed analysis methods. Here, we describe a possible contribution to these by the application of a lateral flow microarray where a panel of recombinant protein antigens was used to differentiate bovine serum samples in the context of the lung disease contagious bovine pleuropneumonia (CBPP). Lateral flow arrays were produced by attaching nitrocellulose onto microscopic slides and spotting of the recombinant proteins onto the membranes. The developed assay included evaluations of substrate matrix and detection reagents to allow for short assay times and convenient read-out options, and to yield a total assay time from sample application to data acquisition of less than ten minutes. It was found that healthy and disease-affected animals could be discriminated (AUC = 97%), and we suggest that the use of an antigen panel in combination with the lateral flow device offers an emerging analytical tool towards a simplified but accurate on-site diagnosis.

  • 40. Glimelius, Bengt
    et al.
    Melin, Beatrice
    Enblad, Gunilla
    Alafuzoff, Irina
    Beskow, Anna
    Ahlström, Håkan
    Bill-Axelson, Anna
    Birgisson, Helgi
    Björ, Ove
    Edqvist, Per-Henrik
    Hansson, Tony
    Helleday, Thomas
    Hellman, Per
    Henriksson, Kerstin
    Hesselager, Göran
    Hultdin, Magnus
    Häggman, Michael
    Höglund, Martin
    Jonsson, Håkan
    Larsson, Chatarina
    Lindman, Henrik
    Ljuslinder, Ingrid
    Mindus, Stephanie
    Nygren, Peter
    Pontén, Fredrik
    Riklund, Katrine
    Rosenquist, Richard
    Sandin, Fredrik
    Schwenk, Jochen M.
    KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.
    Stenling, Roger
    Stålberg, Karin
    Stålberg, Peter
    Sundström, Christer
    Karlsson, Camilla Thellenberg
    Westermark, Bengt
    Bergh, Anders
    Claesson-Welsh, Lena
    Palmqvist, Richard
    Sjöblom, Tobias
    U-CAN: a prospective longitudinal collection of biomaterials and clinical information from adult cancer patients in Sweden2018In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 57, no 2, p. 187-194Article in journal (Refereed)
    Abstract [en]

    Background: Progress in cancer biomarker discovery is dependent on access to high-quality biological materials and high-resolution clinical data from the same cases. To overcome current limitations, a systematic prospective longitudinal sampling of multidisciplinary clinical data, blood and tissue from cancer patients was therefore initiated in 2010 by Uppsala and Umea Universities and involving their corresponding University Hospitals, which are referral centers for one third of the Swedish population. Material and Methods: Patients with cancer of selected types who are treated at one of the participating hospitals are eligible for inclusion. The healthcare-integrated sampling scheme encompasses clinical data, questionnaires, blood, fresh frozen and formalin-fixed paraffin-embedded tissue specimens, diagnostic slides and radiology bioimaging data. Results: In this ongoing effort, 12,265 patients with brain tumors, breast cancers, colorectal cancers, gynecological cancers, hematological malignancies, lung cancers, neuroendocrine tumors or prostate cancers have been included until the end of 2016. From the 6914 patients included during the first five years, 98% were sampled for blood at diagnosis, 83% had paraffin-embedded and 58% had fresh frozen tissues collected. For Uppsala County, 55% of all cancer patients were included in the cohort. Conclusions: Close collaboration between participating hospitals and universities enabled prospective, longitudinal biobanking of blood and tissues and collection of multidisciplinary clinical data from cancer patients in the U-CAN cohort. Here, we summarize the first five years of operations, present U-CAN as a highly valuable cohort that will contribute to enhanced cancer research and describe the procedures to access samples and data.

  • 41. Hamsten, C.
    et al.
    Skattum, L.
    Truedsson, L.
    von Döbeln, U.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hammarström, L.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Heat differentiated complement factor profiling2015In: Journal of Proteomics, ISSN 1874-3919, E-ISSN 1876-7737, Vol. 126, p. 155-162Article in journal (Refereed)
    Abstract [en]

    Complement components and their cascade of reactions are important defense mechanisms within both innate and adaptive immunity. Many complement deficient patients still remain undiagnosed because of a lack of high throughput screening tools. Aiming towards neonatal proteome screening for immunodeficiencies, we used a multiplex profiling approach with antibody bead arrays to measure 9 complement proteins in serum and dried blood spots. Several complement components have been described as heat sensitive, thus their heat-dependent detectability was investigated. Using sera from 16 patients with complement deficiencies and 23 controls, we confirmed that the proteins C1q, C2, C3, C6, C9 and factor H were positively affected by heating, thus the identification of deficient patients was improved when preheating samples. Measurements of C7, C8 and factor I were negatively affected by heating and non-heated samples should be used in analysis of these components. In addition, a proof of concept study demonstrated the feasibility of labeling eluates from dried blood spots to perform a subsequent correct classification of C2-deficiencies. Our study demonstrates the potential of using multiplexed single binder assays for screening of complement components that open possibilities to expand such analysis to other forms of deficiencies.

  • 42.
    Hamsten, Carl
    et al.
    KTH, School of Biotechnology (BIO), Proteomics.
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Hamsten, Marica
    KTH, School of Biotechnology (BIO), Proteomics.
    March, John B.
    Persson, Anja
    KTH, School of Biotechnology (BIO), Proteomics.
    Recombinant surface proteomics as a tool to analyze humoral immune responses in bovines infected by Mycoplasma mycoides subsp. mycoides SC2009In: Molecular & Cellular Proteomics, ISSN 1535-9476, E-ISSN 1535-9484, Vol. 8, no 11, p. 2544-2554Article in journal (Refereed)
    Abstract [en]

    A systematic approach to characterize the surface proteome of Mycoplasma mycoides subspecies mycoides small colony type (M. mycoides SC), the causing agent of contagious bovine pleuropneumonia (CBPP) in cattle, is presented. Humoral immune responses in 242 CBPP affected cattle and controls were monitored against one third of the surface proteins of M. mycoides SC in a high-throughput magnetic bead based assay. First, 64 surface proteins were selected from the genome sequence of M. mycoides SC and expressed as recombinant proteins in E. coli. Binding of antibodies to each individual protein could then be analyzed simultaneously in minute sample volumes with the Luminex suspension array technology. The assay was optimized on Namibian CBPP positive sera and Swedish negative controls to allow detection and 20-fold mean signal separation between CBPP positive and negative sera. Signals were proven to be protein-specific by inhibition experiments and results agreed with western blot experiments. The assay's potential to monitor IgG, IgM and IgA responses over time was shown in a proof-of-concept study with 116 sera from 8 animals in a CBPP vaccine study. In conclusion, a toolbox with recombinant proteins and a flexible suspension array assay that allows multiplex analysis of humoral immune responses to M mycoides SC, has been created.

  • 43. Hamsten, Carl
    et al.
    Wiklundh, Emil
    Gronlund, Hans
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlen, Mathias
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Eklund, Anders
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Grunewald, Johan
    Haggmark-Manberg, Anna
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Elevated levels of FN1 and CCL2 in bronchoalveolar lavage fluid from sarcoidosis patients2016In: Respiratory Research, ISSN 1465-9921, E-ISSN 1465-993X, Vol. 17, article id 69Article in journal (Refereed)
    Abstract [en]

    Background: Sarcoidosis is a granulomatous systemic inflammatory disease in which more than 90 % of all patients develop pulmonary manifestations. Several gene associations have previously been described, but established and clinically useful biomarkers are still absent. This study aimed to find proteins in bronchoalveolar lavage (BAL) fluid that can be associated with the disease. Methods: We developed and performed profiling of 94 selected proteins in BAL fluid and serum samples obtained from newly diagnosed and non-treated patients with sarcoidosis. Using multiplexed immunoassays, a total of 317 BAL and 217 serum samples were analyzed, including asthmatic patients and healthy individuals as controls. Results: Our analyses revealed increased levels of eight proteins in sarcoidosis patients compared to controls. Out of these, fibronectin (FN1) and C-C motif chemokine 2 (CCL2) revealed the strongest associations. In addition, cadherin 5 (CDH5) was found to correlate positively with lymphocyte cell numbers in BAL fluid. Conclusions: Applying a high throughput proteomics screening technique, we found proteins of potential clinical relevance in the context of sarcoidosis.

  • 44. Hedberg, Jesper
    et al.
    Neiman, Maja
    KTH, School of Biotechnology (BIO), Proteomics.
    Donnes, Pierre
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics.
    Molecular profiling of human kidney injury using antibody suspension bead arrays2009In: Toxicology Letters, ISSN 0378-4274, E-ISSN 1879-3169, Vol. 189, p. S94-S94Article in journal (Other academic)
  • 45.
    Henjes, Frauke
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lourido, Lucia
    Ruiz-Romero, Cristina
    Fernandez-Tajes, Juan
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gonzalez-Gonzalez, Maria
    Banco, Francisco J.
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Fuentes, Manuel
    Analysis of Autoantibody Profiles in Osteoarthritis Using Comprehensive Protein Array Concepts2014In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 13, no 11, p. 5218-5229Article in journal (Refereed)
    Abstract [en]

    Osteoarthritis (OA) is the most common rheumatic disease and one of the most disabling pathologies worldwide. To date, the diagnostic methods of OA are very limited, and there are no available medications capable of halting its characteristic cartilage degeneration. Therefore, there is a significant interest in new biomarkers useful for the early diagnosis, prognosis, and therapeutic monitoring. In the recent years, protein microarrays have emerged as a powerful proteomic tool to search for new biomarkers. In this study, we have used two concepts for generating protein arrays, antigen microarrays, and NAPPA (nucleic acid programmable protein arrays), to characterize differential autoantibody profiles in a set of 62 samples from OA, rheumatoid arthritis (RA), and healthy controls. An untargeted screen was performed on 3840 protein fragments spotted on planar antigen arrays, and 373 antigens were selected for validation on bead-based arrays. In the NAPPA approach, a targeted screening was performed on 80 preselected proteins. The autoantibody targeting CHST14 was validated by ELISA in the same set of patients. Altogether, nine and seven disease related autoantibody target candidates were identified, and this work demonstrates a combination of these two array concepts for biomarker discovery and their usefulness for characterizing disease-specific autoantibody profiles.

  • 46.
    Hjelm, Barbara
    et al.
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Igel, Ulrika
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johannesson, Henrik
    Stadler, Charlotte
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Emma
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ponten, Fredrik
    Sjoberg, Anna
    Rockberg, Johan
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Johansson, Christine
    Uhlen, Mathias
    KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Generation of monospecific antibodies based on affinity capture of polyclonal antibodies2011In: Protein Science, ISSN 0961-8368, E-ISSN 1469-896X, Vol. 20, no 11, p. 1824-1835Article in journal (Refereed)
    Abstract [en]

    A method is described to generate and validate antibodies based on mapping the linear epitopes of a polyclonal antibody followed by sequential epitope-specific capture using synthetic peptides. Polyclonal antibodies directed towards four proteins RBM3, SATB2, ANLN, and CNDP1, potentially involved in human cancers, were selected and antibodies to several non-overlapping epitopes were generated and subsequently validated by Western blot, immunohistochemistry, and immunofluorescence. For all four proteins, a dramatic difference in functionality could be observed for these monospecific antibodies directed to the different epitopes. In each case, at least one antibody was obtained with full functionality across all applications, while other epitope-specific fractions showed no or little functionality. These results present a path forward to use the mapped binding sites of polyclonal antibodies to generate epitope-specific antibodies, providing an attractive approach for large-scale efforts to characterize the human proteome by antibodies.

  • 47.
    Hong, Mun-Gwan
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Lee, Woojoo
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Pawitan, Yudi
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Multidimensional Normalization to Minimize Plate Effects of Suspension Bead Array Data2016In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 15, no 10, p. 3473-3480Article in journal (Refereed)
    Abstract [en]

    Enhanced by the growing number of biobanks, biomarker studies can now be performed with reasonable statistical power by using large sets of samples. Antibody-based proteomics by means of suspension bead arrays offers one attractive approach to analyze serum, plasma, or CSF samples for such studies in microtiter plates. To expand measurements beyond single batches, with either 96 or 384 samples per plate, suitable normalization methods are required to minimize the variation between plates. Here we propose two normalization approaches utilizing MA coordinates. The multidimensional MA (multi-MA) and MA-loess both consider all samples of a microtiter plate per suspension bead array assay and thus do not require any external reference samples. We demonstrate the performance of the two MA normalization methods with data obtained from the analysis of 384 samples including both serum and plasma. Samples were randomized across 96-well sample plates, processed, and analyzed in assay plates, respectively. Using principal component analysis (PCA), we could show that plate-wise clusters found in the first two components were eliminated by multi-MA normalization as compared with other normalization methods. Furthermore, we studied the correlation profiles between random pairs of antibodies and found that both MA normalization methods substantially reduced the inflated correlation introduced by plate effects. Normalization approaches using multi-MA and MA-loess minimized batch effects arising from the analysis of several assay plates with antibody suspension bead arrays. In a simulated biomarker study, multi-MA restored associations lost due to plate effects. Our normalization approaches, which are available as R package MDimNornin, could also be useful in studies using other types of high-throughput assay data.

  • 48.
    Häggmark, Anna
    et al.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Byström, Sanna
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Ayoglu, Burcu
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Qundos, Ulrika
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Khademi, M.
    Olsson, T.
    Schwenk, Jochen M.
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Nilsson, Peter
    KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Antibody-based profiling of cerebrospinal fluid within multiple sclerosis2013In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 13, no 15, p. 2256-2267Article in journal (Refereed)
    Abstract [en]

    Antibody suspension bead arrays have proven to enable multiplexed and high-throughput protein profiling in unfractionated plasma and serum samples through a direct labeling approach. We here describe the development and application of an assay for protein profiling of cerebrospinal fluid (CSF). While setting up the assay, systematic intensity differences between sample groups were observed that reflected inherent sample specific total protein amounts. Supplementing the labeling reaction with BSA and IgG diminished these differences without impairing the apparent sensitivity of the assay. We also assessed the effects of heat treatment on the analysis of CSF proteins and applied the assay to profile 43 selected proteins by 101 antibodies in 339 CSF samples from a multiple sclerosis (MS) cohort. Two proteins, GAP43 and SERPINA3 were found to have a discriminating potential with altered intensity levels between sample groups. GAP43 was detected at significantly lower levels in secondary progressive MS compared to early stages of MS and the control group of other neurological diseases. SERPINA3 instead was detected at higher levels in all MS patients compared to controls. The developed assay procedure now offers new possibilities for broad-scale protein profiling of CSF within neurological disorders.

  • 49.
    Häggmark, Anna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hamsten, Carl
    Wiklundh, Emil
    Lindskog, Cecilia
    Mattsson, Cecilia
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology.
    Andersson, Eni
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Lundberg, Ingrid E.
    Gronlund, Hans
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Eklund, Anders
    Grunewald, Johan
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Proteomic Profiling Reveals Autoimmune Targets in Sarcoidosis2015In: American Journal of Respiratory and Critical Care Medicine, ISSN 1073-449X, E-ISSN 1535-4970, Vol. 191, no 5, p. 574-583Article in journal (Refereed)
    Abstract [en]

    Rationale: There is a need to further characterize the antibody repertoire in relation to sarcoidosis and potentially related autoantigens. Objectives: We investigated bronchoalveolar lavage (BAL) and serum samples from patients with sarcoidosis and healthy and diseased control subjects to discover sarcoidosis-associated autoantigens. Methods: Antigen microarrays built on 3,072 protein fragments were used to screen for IgG reactivity in 73 BAL samples from subjects with sarcoidosis, subjects with asthma, and healthy subjects. A set of 131 targets were selected for subsequent verification on suspension bead arrays using 272 additional BAL samples and 141 paired sera. Reactivity to four antigens was furthermore analyzed in 22 unprocessed BAL samples from patients with fibrosis and 269 plasma samples from patients diagnosed with myositis. Measurements and Main Results: Reactivity toward zinc finger protein 688 and mitochondrial ribosomal protein L43 were discovered with higher frequencies in patients with sarcoidosis, for mitochondrial ribosomal protein L43 especially in patients with non-Lofgren syndrome. Increased reactivity toward nuclear receptor coactivator 2 was also observed in patients with non-Lofgren syndrome as compared with patients with Lofgren syndrome. The antigen representing adenosine diphosphate-ribosylation factor GTPase activating protein 1 revealed high reactivity frequency in all sample groups but with significantly higher level of IgG reactivities in patients with sarcoidosis. Conclusions: Autoantigen reactivity was present in most BAL and serum samples analyzed, and the results revealed high interindividual heterogeneity, with most of the reactivities observed in single individuals only. Four proteins are here proposed as sarcoidosis-associated autoimmune targets and of interest for further validation in independent cohorts.

  • 50.
    Häggmark, Anna
    et al.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mikus, Maria
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Mohsenchian, Atefeh
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Hong, Mun-Gwan
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Forsström, Björn
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Gajewska, Beata
    Baranczyk-Kuzma, Anna
    Uhlén, Mathias
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Schwenk, Jochen M.
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Kuzma-Kozakiewicz, Magdalena
    Nilsson, Peter
    KTH, School of Biotechnology (BIO), Proteomics and Nanobiotechnology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
    Plasma profiling revelas three proteins associated to amyotrophic lateral sclerosis2014In: Annals of Clinical and Translational Neurology, ISSN 2328-9503, Vol. 1, no 8, p. 544-553Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease leading to muscular paralysis and death within 3-5 years from onset. Currently, there are no reliable and sensitive markers able to substantially shorten the diagnosis delay. The objective of the study was to analyze a large number of proteins in plasma from patients with various clinical phenotypes of ALS in search for novel proteins or protein profiles that could serve as potential indicators of disease.

    METHODS: Affinity proteomics in the form of antibody suspension bead arrays were applied to profile plasma samples from 367 ALS patients and 101 controls. The plasma protein content was directly labeled and protein profiles obtained using 352 antibodies from the Human Protein Atlas targeting 278 proteins. A focused bead array was then built to further profile eight selected protein targets in all available samples.

    RESULTS: Disease-associated significant differences were observed and replicated for profiles from antibodies targeting the proteins: neurofilament medium polypeptide (NEFM), solute carrier family 25 (SLC25A20), and regulator of G-protein signaling 18 (RGS18).

    INTERPRETATION: Upon further validation in several independent cohorts with inclusion of a broad range of other neurological disorders as controls, the alterations of these three protein profiles in plasma could potentially provide new molecular markers of disease that contribute to the quest of understanding ALS pathology.

123 1 - 50 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf