Digitala Vetenskapliga Arkivet

Change search
Refine search result
12 1 - 50 of 93
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dankowicz, H.
    et al.
    Virginia Polytechnic Institute and State University, Department of Engineering Science and Mechanics, Virginia, USA.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Control of near-grazing dynamics in impact oscillators2005In: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences, ISSN 1364-5021, E-ISSN 1471-2946, Vol. 461, no 2063, p. 3365-3380Article in journal (Refereed)
    Abstract [en]

    A method is presented for controlling the persistence of a local attractor near a grazing periodic trajectory in a piecewise smooth dynamical system in the presence of discontinuous jumps in the state associated with intersections with system discontiunities. In particular, it is shown that a discrete, linear feedback strategy may be employed to retain the existence of an attractor near the grazing trajectory, such that the deviation of the attractor from the grazing trajectory goes to zero as the system parameters approach those corresponding to grazing contact. The implementation relies on a local analysis of the near-grazing dynamics using the concept of discontinuity mappings. Numerical results are presented for a linear and a nonlinear oscillator.

  • 2.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Energy Efficiency Analyses of a Vehicle in Modal and Transient Driving Cycles including Longitudinal and Vertical Dynamics2017In: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340, Vol. 53, p. 263-275Article in journal (Refereed)
    Abstract [en]

    The growing concerns about the environmental issues caused by vehicles and a strive forbetter fuel economy, urge the legislators to introduce conservative regulations on vehicletesting and homologation procedures. To have accurate evaluations, driving cycles thatcan sufficiently describe the vehicles’ conditions experienced during driving is a prerequisite.In current driving cycles there are still some issues which are disregarded. The aim ofthe presented work is to study the contribution of chassis and vehicle dynamics settings ontyre rolling loss in comparison with the original assumptions made in the NEDC, FTP andHWFET driving cycles. A half-car model including a semi-physical explicit tyre model tosimulate the rolling loss is proposed. For the chosen vehicle and tyre characteristics,depending on the specific chassis settings and considered driving cycle, considerable differenceup to 7% was observed between the energy consumption of the proposed- and conventionalapproach. The current work aims to provide the legislators with a betterinsight into the real effects of chassis and vehicle dynamics during the certification processto further improve the test related procedures required for homologation such as generationof road load curves. I.e., the aim is not to provide a new homologation process, sincethere are also other effects such as road roughness and tyre temperature that need to beconsidered. The results are also of interest for the vehicle manufacturers for further considerationsduring test preparation as well as in the development phase in order to reduce theenvironmental impacts.

    Download full text (pdf)
    fulltext
  • 3.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    A Multi-Line Brush Based Tyre Model to Study the Rolling Resistance and Energy Loss2015In: Proceedings of 4th International Tyre Colloquium: Tyre Models for Vehicle Dynamics Analysis, Guildford, UK (2015), 2015Conference paper (Refereed)
    Abstract [en]

    This study aim to develop a three dimensional multi-line brush based tyre model for investigating the rolling resistance and energy loss in tyres. The losses in the model are characterised by the external losses originated from the sliding phenomenon in the tyre contact patch, and the internal losses due to the tyre viscoelastic nature which is employed by a rubber model. The Extended Brush tyre Model (EBM) proposed in this work can be used to estimate the dissipated energy and the rolling resistance under different driving manoeuvres and wheel conditions. This paper focuses on the estimation of energy loss and in-plane rolling resistance.

  • 4.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Extended Brush Tyre Model to Study Rolling Loss in Vehicle Dynamics Simulations2017In: International Journal of Vehicle Design, ISSN 0143-3369, E-ISSN 1741-5314, Vol. 73, no 4, p. 255-280Article in journal (Refereed)
    Abstract [en]

    This paper describes a semi-physical tyre model that enables studies of rolling loss in combination with vehicle dynamic simulations. The proposed model, named extended brush tyre model (EBM), takes the effects of driving conditions, wheel alignment, and tyre materials into account. Compared to the basic brush tyre model, EBM includes multiple numbers of lines and bristles as well as integrated rubber elements into the bristles. The force and moment characteristics of the model are shown to have a good correlation with the Magic Formula tyre model and experimental data. The numerically estimated rolling resistance coefficients under different conditions are compared to findings in the literature, FE-simulations and experiments. The model can capture some aspects that are not covered by the available literature and experimental observations such as camber effect on rolling loss. EBM can be used as a platform for future studies of rolling loss optimisation using active chassis control.

  • 5.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Edrén, Johannes
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Investigating the potential of wheel corner modules in reducing rolling resistance of tires2014In: FISITA 2014 World Automotive Congress - Proceedings, FISITA , 2014Conference paper (Refereed)
    Abstract [en]

    The improvement in tire rolling efficiency is one of the key elements to optimize the fuel economy and thereby reduce the vehicle emissions. Earlier efforts to reduce the rolling resistance have mainly been focusing on new materials in the tire compounds. The overall research aim of this study is to present the potentials of implementing innovative chassis concepts with the focus on Wheel Corner Modules (WCM) by describing the possibilities in affecting rolling resistance and relating them to previous research findings. The core idea of the concept is to actively control and actuate all degrees of freedom in the wheel i.e. implementing steering, suspension and propulsion functions into a unique module which can be implemented in each corner of the vehicle. Using this concept the limitations of traditional wheel kinematics can be resolved extensively. This article presents the first step towards creating a vehicle simulation model that can show how the WCM functionality can influence the rolling resistance. A model of loss is chosen after analysing the behaviour of a three different rubber models and then implemented into a brush tire model. An effective way, but less complicated compared to current methods, to introduce the loss into tire model is presented. In conventional suspensions, the design is compromising between for example safety, comfort and rolling resistance, etc. at all driving conditions. However, using the WCM, the possibility of achieving a better compromise between those objectives is possible.Finally, based on WCM functionalities a plausible control architecture is proposed. 

  • 6.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Edrén, Johannes
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Investigating the Potential of Wheel Corner Modules in Reducing Rolling Resistance of Tyres2014In: Proceedings of FISITA "14 World Automotive Congress, Maastricht, Netherlands (2014), 2014Conference paper (Refereed)
    Abstract [en]

    The improvement in tire rolling efficiency is one of the key elements to optimize the fuel economy and thereby reduce the vehicle emissions. Earlier efforts to reduce the rolling resistance have mainly been focusing on new materials in the tire compounds. The overall research aim of this study is to present the potentials ofimplementing innovative chassis concepts with the focus on Wheel Corner Modules (WCM) by describing thepossibilities in affecting rolling resistance and relating them to previous research findings. The core idea of theconcept is to actively control and actuate all degrees of freedom in the wheel i.e. implementing steering,suspension and propulsion functions into a unique module which can be implemented in each corner of the vehicle. Using this concept the limitations of traditional wheel kinematics can be resolved extensively. This article presents the first step towards creating a vehicle simulation model that can show how the WCM functionality can influence the rolling resistance. A model of loss is chosen after analysing the behaviour of three different rubber models and then implemented into a brush tire model. An effective way, but less complicatedcompared to current methods, to introduce the loss into tire model is presented. In conventional suspensions, thedesign is compromising between for example safety, comfort and rolling resistance, etc. at all drivingconditions. However, using the WCM, the possibility of achieving a better compromise between those objectivesis possible. Finally, based on WCM functionalities a plausible control architecture is proposed.

  • 7.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Rolling Loss Optimisation of an Over-actuated Vehicle using Predictive Control of Steering and Camber ActuatorsArticle in journal (Refereed)
  • 8.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    An Energy Oriented Control Allocation Strategy for Over-actuated Road VehiclesArticle in journal (Refereed)
  • 9.
    Davari, Mohammad Mehdi
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Rolling loss analysis of combined camber and slip angle control2016Conference paper (Refereed)
    Abstract [en]

    The objective of this work is to present a new functionality of over-actuated systems, such as Wheel Corner Modules, to reduce the rolling loss in vehicles. The findings are based on numerical simulations using a bicycle model coupled with a newly proposed tyre model which is capable of simulating the tyre losses during vehicle motions. The results show that for the considered vehicle in the considered manoeuvre the rolling loss can be reduced about 25–40% by proper control of camber and slip angle combinations, while still maintaining the vehicle performance.

  • 10.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Implementation and evaluation of force allocation control of a down-scaled prototype vehicle with wheel corner modules2013In: International Journal of Vehicle Systems Modelling and Testing, ISSN 1745-6436, Vol. 8, no 4, p. 335-363Article in journal (Refereed)
    Abstract [en]

    The implementation of wheel corner modules on vehicles creates new possibilities of controlling wheel forces through the utilisation of multiple actuators and wheel motors. Thereby new solutions for improved handling and safety can be developed. In this paper, the control architecture and the implementation of wheel slip and chassis controllers on a down-scaled prototype vehicle are presented and analysed. A simple, cost-effective force allocation algorithm is described, implemented and evaluated in simulations and experiments. Straight line braking tests were performed for the three different controller settings individual anti-lock brakes (ABS), yaw-torque-compensated ABS and force allocation using both wheel torque and steering angle control at each wheel. The results show that force allocation is possible to use in a real vehicle, and will enhance the performance and stability even at a very basic level, utilising very few sensors with only the actual braking forces as feedback to the chassis controller.

  • 11.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Utilization of Vertical Loads by Optimization for Integrated Vehicle Control2012In: Proceedings of AVEC12, 11th Symposium on Advanced Vehicle Control, September 9-12, Seoul, Korea, 2012., 2012Conference paper (Other academic)
    Abstract [en]

    This paper presents results on how to optimally utilise vertical loading on individual wheels in order to improve vehicle performance during limit handling. Numerical optimisation has been used to find solutions on how the active suspension should be controlled and coordinated together with friction brakes and electric power assisted steering (EPAS). Firstly, it is investigated whether the brake distance can be shortened. Secondly, the performance during an evasive manoeuvre is investigated. The result shows that brake distance can be improved by at least 0.5 m and the speed through the evasive manoeuvre by roughly 1 km/h for the studied vehicle. Quick actuators is shown to give even better performance. These results provide guidance on how active suspension can be used to give significant improvements in vehicle performance.

  • 12.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Energy efficient cornering using over-actuationManuscript (preprint) (Other academic)
    Abstract [en]

    This work deals with utilisation of active steering and propulsion on individual wheels in order to improve a vehicle’s energy efficiency during a double lane change manoeuvre at moderate speeds. Through numerical optimization, solutions have been found for how wheel steering angles and propulsion torques should be used in order to minimise the energy consumed by the vehicle travelling through the manoeuvre. The results show that, for the studied vehicle, the cornering resistance can be reduced by 10% compared to a standard vehicle configuration. Based on the optimization study, simplified algorithms to control wheel steering angles and propulsion torques that are more energy efficient are proposed. These algorithms are evaluated in a simulation study that includes a path tracking driver model and an energy efficiency improvement of 6-9% based on a combined rear axle steering and torque vectoring control during cornering is found. The results indicate that in order to improve energy efficiency for a vehicle driving in a non-safety-critical situation the force distribution should be shifted towards the front wheels.

  • 13.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Energy efficient cornering using over-actuation2019In: Mechatronics (Oxford), ISSN 0957-4158, E-ISSN 1873-4006, Vol. 59, p. 69-81Article in journal (Refereed)
    Abstract [en]

    This work deals with utilisation of active steering and propulsion on individual wheels in order to improve a vehicle's energy efficiency during a double lane change manoeuvre at moderate speeds. Through numerical optimisation, solutions have been found for how wheel steering angles and propulsion torques should be used in order to minimise the energy consumed by the vehicle travelling through the manoeuvre. The results show that, for the studied vehicle, the energy consumption due to cornering resistance can be reduced by approximately 10% compared to a standard vehicle configuration. Based on the optimisation study, simplified algorithms to control wheel steering angles and propulsion torques that results in more energy efficient cornering are proposed. These algorithms are evaluated in a simulation study that includes a path tracking driver model. Based on a combined rear axle steering and torque vectoring control an improvement of 6–8% of the energy consumption due to cornering was found. The results indicate that in order to improve energy efficiency for a vehicle driving in a non-safety-critical cornering situation the force distribution should be shifted towards the front wheels.

  • 14.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Utilization of optimization solutions to control active suspension for decreased braking distanceManuscript (preprint) (Other academic)
    Abstract [en]

    This work deals with how to utilize active suspension on individual vehicle wheels in order to improve the vehicle performance during straight-line braking. Through numerical optimization, solutions have been found to how active suspension should be controlled and coordinated with friction brakes to shorten the braking distance. The results show that, for the studied vehicle, the braking distance can be shortened by more than 1 m when braking from 100 km/h. The applicability of these results is studied by investigating the approach for different vehicle speeds and actuator stroke limitations. It is shown that substantial improvements in the braking distance can also be found for lower velocities, and that the actuator strokes are an important parameter. To investigate the potential of implementing these findings in a real vehicle, a validated detailed vehicle model equipped with active struts is analysed. Simplified control laws, appropriate for on-board implementation and based on knowledge of the optimized solution, are proposed and evaluated. The results show that substantial improvements of the braking ability, and thus safety, can be made using this simplified approach. Particle model simulations have been made to explain the underlying physics and limitations of the approach. These results provide valuable guidance on how active suspension can be used to achieve significant improvements in vehicle performance with reasonable complexity and energy consumption.

  • 15.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Jonasson, Mats
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. Volvo Car Corporation, Sweden .
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Trigell, Annika Stensson
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
    Utilisation of optimisation solutions to control active suspension for decreased braking distance2015In: Vehicle System Dynamics, ISSN 0042-3114, E-ISSN 1744-5159, Vol. 53, no 2, p. 256-273Article in journal (Refereed)
    Abstract [en]

    This work deals with how to utilise active suspension on individual vehicle wheels in order to improve the vehicle performance during straight-line braking. Through numerical optimisation, solutions have been found as regards how active suspension should be controlled and coordinated with friction brakes to shorten the braking distance. The results show that, for the studied vehicle, the braking distance can be shortened by more than 1 m when braking from 100 km/h. The applicability of these results is studied by investigating the approach for different vehicle speeds and actuator stroke limitations. It is shown that substantial improvements in the braking distance can also be found for lower velocities, and that the actuator strokes are an important parameter. To investigate the potential of implementing these findings in a real vehicle, a validated detailed vehicle model equipped with active struts is analysed. Simplified control laws, appropriate for on-board implementation and based on knowledge of the optimised solution, are proposed and evaluated. The results show that substantial improvements of the braking ability, and thus safety, can be made using this simplified approach. Particle model simulations have been made to explain the underlying physical mechanisms and limitations of the approach. These results provide valuable guidance on how active suspension can be used to achieve significant improvements in vehicle performance with reasonable complexity and energy consumption.

  • 16.
    Edrén, Johannes
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jonasson, Mats
    Vehicle Dynamics and Active Safety, Volvo Car Corporation, Göteborg, Sverige.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    The developement of a down-scaled over-actuated vehicle equipped with autonomous corner module functionality2010In: FISITA Proceedings 2010, paper F2010B056, 2010Conference paper (Refereed)
    Abstract [en]

    This paper presents the development of a functional down-scaled prototype of a passenger car with capability to control steering, wheel torques, wheel loads and camber individually. The adopted chassis technology is based on a modularised platform, referred to as Autonomous corner modules (ACM), which simplifies the re-use of components at the four corners of the vehicle and between different vehicles.

    This work gives an insight in the design of the vehicle and the selection of electrical actuators and sensors to provide all ACM functions. Since a part of the implemented chassis components do not admit to be scaled down at the same level, necessary design modifications are suggested. The problems of scaling, meaning that a down-scaled prototype cannot fully emulate a full-scaled vehicle’s all functions simultaneously, are a great disadvantage of down scaling. For example is gravity one desired parameter that is hard to physically scale down.

    In order to evaluate the behaviour of the down-scaled prototype, it is of high importance to establish the characteristics of the developed vehicle and its subsystems. In particular, tyre design is considered as complex. For this reason, different ideas of methods to confirm tyre characteristics are proposed.

    Also the paper presents the initial process of developing the prototype vehicle that is later to be used in vehicle dynamics research.

  • 17.
    Favre, Tristan
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Näfver, Jonas Jarlmark
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Efraimsson, Gunilla
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Static coupling between detached-eddy simulations and vehicle dynamic simulations of a generic road vehicle model with different rear configurations in unsteady crosswind2016In: International Journal of Vehicle Design, ISSN 0143-3369, E-ISSN 1741-5314, Vol. 72, no 4, p. 332-353Article in journal (Refereed)
    Abstract [en]

    In this paper, aerodynamic loads of a generic car model obtained from advanced computational fluid dynamics (CFD) simulations are coupled to a vehicle dynamics model to enable the assessment of the on-road response. The influence of four rear configurations is studied. The different configurations yield large differences in yaw moments and side forces, which in turn result in considerable discrepancies in lateral displacements as well as yaw rates. From the simulations, it is seen that through balancing the location of the centre of pressure, the stiffness of the suspension bushings and the cornering stiffness of the tyres, it is possible to obtain stable vehicles in strong crosswind conditions for all four rear designs. The results show that monitoring the location of the aerodynamic centre of pressure with respect to the centre of gravity and the neutral steer point is essential for the possibility of designing stable vehicles in transient crosswind.

  • 18.
    Harell Poznic, Pia
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Experimental evaluation of nonlinear dynamics and coupled motions in a pantograph2010In: Proceedings of the ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 1, Pts A and B, NEW YORK: AMER SOC MECHANICAL ENGINEERS , 2010, Vol. 1, p. 619-626Conference paper (Refereed)
    Abstract [en]

    Continuous electric power supply, which is transferred from the contact wire to the train through a pantograph mechanism, is a necessity for a train to function satisfactory. Since various sources of nonlinearities are present, such as friction in the pantograph suspensions and impacts in the subsystems and at the excitation, there is a possibility of nonlinear dynamic behaviour. The aim of this work is to experimentally investigate the dynamic behaviour of a commercial pantograph to verify if nonlinear behaviour and coupling effects can occur. A test rig has been built that has the ability to simulate both the horizontal and vertical excitation generated by the contact wire. Measurements have been performed for sinusoidal input signals both in horizontal and vertical directions. Harmonic and subharmonic motions as well as irregular behaviour are shown to exist in the system. The results show that the pantograph's rotational degree of freedom, friction in the suspension systems and the nonlinear stiffness play an important role for the dynamic behaviour of the system and are therefore crucial to include when creating mathematical models of the system.

  • 19.
    Hvitfeldt, Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Driver gaze model for motion cueing yaw feedback optimisation2023In: 28th Symposium on Dynamics of Vehicles on Roads and Tracks, 2023Conference paper (Refereed)
    Abstract [en]

    Driving simulators are increasingly important in vehicle development, benefiting from hardware and motion cueing algorithm (MCA) advancements. However, current state-of-the-art MCAs are optimising with regards to a vehicle fixed vestibular system, ignoring active and passive head movements during manoeuvres. Research shows that drivers actively move their heads to focus their gaze and passively stabilising it during involuntary trunk movements, resulting in significant differences between vehicle and head yaw angles. Humans isolate trunk and head movement in the range of 0.1-1.0 Hz, suggesting neck-driven gaze stabilisation. This behaviour is not accounted for in current MCAs, warranting an investigation. This study develops a driver gaze model to enhance motion cueing strategies and compares it to existing methods. Findings indicate significant discrepancies between vehicle and estimated head yaw rate in winter testing with high slip angles, and that omitting vestibular models and separating the slip angle in the yaw feedback improves the motion cueing with regards to induced head movements. Further, the results shows that there is a clear relationship between motion cueing, visual feedback, and induced driver head movement. In conclusion, driver gaze models can improve motion cueing strategies in driving simulators, and thus the study highlights the need for considering driver gaze behaviour and provides insights for tuning and optimising MCAs.

  • 20.
    Hvitfeldt, Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Motion cueing for winter test conditions2022In: IAVSD 2021: Advances in Dynamics of Vehicles on Roads and Tracks II, Springer Science and Business Media Deutschland GmbH , 2022, p. 888-901Conference paper (Refereed)
    Abstract [en]

    This paper investigates the tuning of motion cues in dynamic driving simulators for EPAS (Electronic power assisted steering) tuning in winter conditions. The study investigates the differences in frequency content of the vehicle states yaw rate and lateral acceleration between dry and winter EPAS tuning. Based on the results from this investigation, which shows an increased spectral density of low frequency content in both yaw rate and lateral acceleration, coordinated tilt is added to the motion cueing, to give the driver low frequency lateral acceleration feedback. The tilt coordination filter is tuned using offline optimisation based on logged data. The resulting MCA is evaluated objectively using a linear model of a driving simulator and subjectively through driving around a winter test track with six test drivers. The test is conducted using a pairwise comparison of two different settings, one setting without and another with added tilt coordination. Objective metrics shows reduction in lateral false cues, increased correlation between actual vehicle acceleration and simulator acceleration and an increased spectral density below 0.30 Hz. The pairwise comparison and the commentary feedback shows potential in adding tilt coordination with more drivers favouring tilt coordination, however statistical significance cannot be reached due to the low number of drivers.

  • 21.
    Hvitfeldt, Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Optimisation of roll axis position in a moving base driving simulator to minimise false cues2021In: Actes (IFSTTAR), Driving Simulation Association , 2021, p. 189-190Conference paper (Refereed)
    Abstract [en]

    This paper presents a method to minimise false cues and reduce phase lag by positioning the roll axis objectively based on offline optimisation. It shows that a nonfiltered roll feedback signal could be used to reduce phase lag in the simulator and the subjective assessments indicate that the reduction of phase lag and false cues could improve the perceived fidelity of the simulator.

  • 22.
    Hvitfeldt, Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Enhancing perception of vehicle motion by objective positioning of the longitudinal axis of rotation in driving simulatorsManuscript (preprint) (Other academic)
    Abstract [en]

    The automotive industry is heading towards a more objective approach to vehicle testing, but subjective evaluation is still an important part of the development process. Subjective evaluation in physical testing has environmental implications and is dependent on ambient conditions. A more repeatable, faster, safer, and more cost-effective tool for subjective evaluation is to use moving base driving simulators. The motion cueing algorithms (MCA) maps the movement of the vehicle into the limited space of the simulator. The choice of reference point, i.e., where on the vehicle to sample the motion to feed to the MCA and the alignment of the axis of rotation of the simulator cabin is still an open topic. This paper investigates the choice of reference point and corresponding simulator longitudinal axis of rotation in roll using two methods. The first method uses a linearised model of the combined system of vehicle, simulator, and vestibular models. The second method, to position the cabin longitudinal axis of rotation, is based on offline optimisation. The linear model can capture important characteristics of the specific forces and rotations that are fed to the driver through the motion cueing algorithms and offers a method to objectively analyse and potentially tune the motion cueing. The analysis is further complemented with a subjective evaluation of corresponding settings. The results from the linear model, the offline optimisation and the subjective evaluation shows that a reference point at the driver’s head has a clear advantage over the full frequency range compared to a reference point in the chassis roll axis and that the positioning of the cabin longitudinal axis of rotation has a significant effect on the perceived vehicle characteristics. 

  • 23.
    Hvitfeldt, Henrik
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Objective development in driving simulator motion control: Evaluation of motion cueing using a linearised driving simulator model2021In: Proceedings of the Resource Efficient Vehicles Conference - 2021 (rev2021), 2021Conference paper (Other academic)
  • 24.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. Scan CV AB, Granparksvagen 10, S-15148 Södertälje.
    Ussner, Matthias
    Scan CV AB, Granparksvagen 10, S-15148 Södertälje, Sweden..
    Osterlof, Rickard
    Scan CV AB, Granparksvagen 10, S-15148 Södertälje, Sweden..
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign.
    Effect of Ambient and Tyre Temperature on Truck Tyre Rolling Resistance2022In: International Journal of Automotive Technology, ISSN 1229-9138, E-ISSN 1976-3832, Vol. 23, no 6, p. 1651-1661Article in journal (Refereed)
    Abstract [en]

    Rolling resistance is consuming a large portion of the generated powertrain torque and thus have a substantial effect on truck energy consumption and greenhouse gas emissions. EU labelling of tyres mandates the manufacturers to measure rolling resistance at +25 degrees C ambient temperature after stabilised rolling resistance has been established. This is a convenient way of comparing rolling resistance but disregards aspects such as transient rolling resistance and influence of the ambient temperature. For many purposes, such as dimensioning batteries for electric vehicles, this value is not representative enough to give a good understanding of the rolling resistance. In this article, the rolling resistance of a truck tyre was measured at different ambient temperatures (-30 to +25 degrees C) in a climate wind tunnel and a considerable tyre and ambient temperature dependency on rolling resistance was found. The investigation shows that the temperature inside the tyre shoulder has a good correlation with rolling resistance. Measurements with spraying water on tyres were conducted showing a considerable increase in rolling resistance due to higher cooling effect. Driving range simulations of a long haulage battery-electric truck have been conducted with temperature-dependent rolling and aerodynamic resistance, showing a significant decrease in driving range at decreasing temperature.

  • 25.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Ussner, Matthias
    Scania.
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign.
    Do heat-insulated wheelhouses affect truck tyre temperature and rolling resistance?Manuscript (preprint) (Other academic)
    Abstract [en]

    Due to legislations introduced to prevent global warming, vehicle manufacturers must find new ways to reduce CO2 emissions. This paper explores a way to reduce rolling resistance by heat insulating and covering a truck's wheelhouse. The rolling resistance of a truck tyre was measured at +5 °C ambient temperature for consecutive speed steps in a climate wind tunnel with and without heat insulation. The study showed that by encapsulating and insulating the wheelhouse, already generated strain-induced heat could be kept in the tyre, consequently producing a lower rolling resistance. During the tests, the tyre shoulder temperature was monitored along with the tyre pressure. When the wheelhouses were encapsulated, a significant reduction in rolling resistance and an increase in tyre pressure and temperature were measured at all evaluated speed levels.

  • 26.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Ussner, Matthias
    Scania.
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Effect of Ambient and Tyre Temperature on Truck Tyre Rolling Resistance2022In: International Journal of Automotive Technology, ISSN 1229-9138, E-ISSN 1976-3832Article in journal (Refereed)
    Abstract [en]

    Rolling resistance is consuming a large portion of the generated powertrain torque and thus have a substantial effect on truck energy consumption and greenhouse gas emissions. EU labelling of tyres mandates the manufacturers to measure rolling resistance at +25 °C ambient temperature after stabilised rolling resistance has been established. This is a convenient way of comparing rolling resistance but disregards aspects such as transient rolling resistance and influence of the ambient temperature. For many purposes, such as dimensioning batteries for electric vehicles, this value is not representative enough to give a good understanding of the rolling resistance. In this article, the rolling resistance of a truck tyre was measured at different ambient temperatures (-30 to +25 °C) in a climate wind tunnel and a considerable tyre and ambient temperature dependency on rolling resistance was found. The investigation shows that the temperature inside the tyre shoulder has a good correlation with rolling resistance. Measurements with spraying water on tyres were conducted showing a considerable increase in rolling resistance due to higher cooling effect. Driving range simulations of a long haulage battery-electric truck have been conducted with temperature-dependent rolling and aerodynamic resistance, showing a significant decrease in driving range at decreasing temperature.

  • 27.
    Hyttinen, Jukka
    et al.
    KTH. Scania CV AB.
    Ussner, Matthias
    Scania CV AB, Scania CV AB.
    Österlöf, Rickard
    Scania CV AB, Scania CV AB.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Estimating Tire Pressure Based on Different Tire Temperature Measurement Points2024In: Automotive Technical Papers, WONLYAUTO 2024, SAE International , 2024Conference paper (Refereed)
    Abstract [en]

    Knowing the tire pressure during driving is essential since it affects multiple tire properties such as rolling resistance, uneven wear, and how prone the tire is to tire bursts. Tire temperature and cavity pressure are closely tied to each other; a change in tire temperature will cause an alteration in tire cavity pressure. This article gives insights into which tire temperature measurement position is representative enough to estimate pressure changes inside the tire, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tire pressure and temperature at the tire inner liner, the tire shoulder, and the tread surface were monitored. The measurements show that tires do not have a uniform temperature distribution. The ideal gas law is used to estimate the tire pressure from the measured temperatures. The results indicate that of the compared temperature points, the inner liner temperature is the most accurate for estimating tire pressure changes (average error 0.63%), and the pressure changes during driving are nearly isochoric. This conclusion can be drawn because the ratio between inner liner temperature and tire pressure is nearly constant, and the pressure can be simulated well using the isochoric gas law.

  • 28.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Ussner, Matthias
    Scania.
    Österlöf, Rickard
    Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Estimating tyre pressure based on different tyre temperature measurement pointsManuscript (preprint) (Other academic)
    Abstract [en]

    Knowing the tyre pressure during driving is essential since it affects multiple tyre properties such as rolling resistance, uneven wear, and how prone the tyre is to tyre bursts. Tyre temperature and cavity pressure are closely tied to each other; a change in tyre temperature will cause an alteration in tyre cavity pressure. This article gives insights into which tyre temperature measurement position is representative enough to estimate pressure changes inside the tyre, and whether the pressure changes can be assumed to be nearly isochoric. Climate wind tunnel and road measurements were conducted where tyre pressure and temperature at the tyre inner-liner, the tyre shoulder, and the tread surface were monitored. The measurements show that tyres do not have a uniform temperature distribution. The ideal gas law is used to estimate the tyre pressure from the measured temperatures. The results indicate that of the compared temperature points, the inner-liner temperature is the most accurate for estimating tyre pressure changes (average error 0.63 %), and the pressure changes during driving are nearly isochoric. This conclusion can be drawn because the ratio between inner-liner temperature and tyre pressure is nearly constant, and the pressure can be simulated well using the isochoric gas law.

  • 29.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics. Scania CV AB, Granparksvagen 10, SE-15148 Södertälje, Sweden..
    Ussner, Matthias
    Scania CV AB, Granparksvagen 10, SE-15148 Södertälje, Sweden..
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania CV AB, Granparksvagen 10, SE-15148 Södertälje, Sweden..
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Truck tyre transient rolling resistance and temperature at varying vehicle velocities: Measurements and simulations2023In: Polymer testing, ISSN 0142-9418, E-ISSN 1873-2348, Vol. 122, article id 108004Article in journal (Refereed)
    Abstract [en]

    Rolling resistance is causing a significant part of the energy consumption in truck applications, especially at lowspeed levels. To be able to better estimate the energy consumption or remaining driving range, the truck tyre rolling resistance must be understood well. Temperature is a vital parameter for rolling resistance estimations. This article shows truck tyre rolling resistance and temperature measurements in a climate wind tunnel and simulations of tyre temperature and rolling resistance. During the climate wind tunnel tests, tyre temperature at the shoulder and tread was measured. In addition, on-road driving was conducted with inner-liner infrared temperature measurements. Tyre temperature simulations were conducted using a thermal tyre model with speed-variable thermal inertia. The comparison of tyre temperature simulations with measured inner-liner and shoulder temperatures showed good agreement with the test data. The rolling resistance was simulated using the principle of time-temperature superposition, and a master curve for rolling resistance and a curve for tyre temperature shift were constructed. These curves were used to simulate rolling resistance at a wide range of speed levels with good agreement to the experimental results. The investigation showed that the tyre shoulder temperature is a better indicator of rolling resistance than infrared measurements from the tyre tread.

  • 30.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Wentzel, Henrik
    KTH, School of Engineering Sciences (SCI).
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign.
    Development and analysis of an on-road torque measurement device for trucksManuscript (preprint) (Other academic)
    Abstract [en]

    Background: Rolling resistance and aerodynamic losses cause a significant part of a truck's energy consumption. Therefore there is an interest from both vehicle manufacturers and regulators to measure these losses to understand, quantify and reduce the energy consumption of vehicles. On-road measurements are particularly interesting because it enables testing in various ambient conditions and road surfaces with vehicles in service.

    Objective: Common driving loss measurement devices require unique instrumented measurement wheels, which hinders effective measurements of multiple tyre sets or measurements of vehicles in service. For this purpose, the objective is to develop a novel load-sensing device for measuring braking or driving torque.

    Methods: The strength of the measurement device is calculated using finite element methods, and the output signal is simulated using virtual strain gauge simulations. In addition to the signal simulation, the device is calibrated using a torsional test rig.

    Results: The simulation results confirm that the device fulfils the strength requirements and is able to resolve low torque levels. The output signal is simulated for the novel cascaded multi-Wheatstone bridge using the strains extracted from the finite element analysis. The simulations and measurements show that the measurement signal is linear and not sensitive to other load directions. The device is tested on a truck, and the effort of mounting the device is comparable to a regular tyre change.

    Conclusions: A novel driving loss measurement device design is presented with an innovative positioning of strain gauges decoupling the parasitic loads from the driving loss measurements. The design allows on-road testing using conventional wheels without requiring special measurement wheels or instrumentation of drive shafts, enabling more affordable and accurate measurements.

  • 31.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. Scania.
    Österlöf, Rickard
    Scania.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Constitutive rubber model suitable for rolling resistance simulations of truck tyres2022In: Proceedings of the Institution of mechanical engineers. Part D, journal of automobile engineering, ISSN 0954-4070, E-ISSN 2041-2991Article in journal (Refereed)
    Abstract [en]

    Tyres are a vital vehicle component forming an interface between a vehicle and the road, enabling the generation of braking, steering and traction forces. However, they also generate rolling resistance which researchers have tried to minimise through the years for environmental and economic reasons. Despite numerous attempts to model rolling resistance of tyres there still does not seem to exist a simple, flexible and accepted way of modelling rolling resistance in the time domain as well as parametrising models in an easy and accessible way. This study explores a simple and intuitive way of parametrising a hyperviscoplastic parallel rheological framework. In the experimental part of this study, rubber samples with various amounts of carbon black filler are extracted from a truck tyre section and tested using dynamic mechanical analysis. The test data was used to parametrise the material model. The model consists of Mooney-Rivlin hyperelasticity, 40 Prony elements and 8 perfectly plastic elements with Ogden hyperelasticity. The paper introduces a method to obtain a large number of parameters using only six tuneable parameters, which simplifies the tuning of the model drastically. The parametrised model is suitable for tyre rolling resistance simulations with frequency and strain amplitude dependency of the storage and loss modulus. A wide range of strain amplitudes and frequencies can be covered with the proposed method and it is possible to achieve a good fit for the storage and loss modulus values with the benefit of only a few tuneable parameters. Additional Prony or plastic networks do not increase the amount of tuneable parameters. Moreover, the method can be used to parametrise the material using manual iterations which is generally not possible for a parallel rheological framework with such a large amount of parameters. 

  • 32.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Österlöf, Rickard
    Scania.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.
    Finite element truck tyre rolling resistance simulation using a viscoplastic parallel rheological frameworkManuscript (preprint) (Other academic)
    Abstract [en]

    A vehicle’s energy consumption is significantly affected by a resisting force created by the tyres. This resisting force, called rolling resistance, is an essential factor in the energy consumption of trucks, not only in terms of operational costs but also in terms of the range of electric trucks or other vehicles that run on sustainable energy sources. This article presents a method for calculating truck tyre rolling resistance in finite element software (MSC Marc). With the help of X-ray, 3D, and CT scanning, a representative tyre model is obtained. A viscoplastic model with separate viscoelastic and plastic parts is used to model rubber. The rolling resistance coefficient is obtained using two different methods: calculating it from the nodal contact forces at the contact patch and from contact body forces. Both methods produced comparable results, showing that the constitutive model produces realistic simulation results and, therefore, is suitable for rolling resistance simulations.

  • 33.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. Scania.
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. Scania.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Simulation of a truck tyre using a viscoplastic constitutive rubber model2022In: IAVSD 2021: Advances in Dynamics of Vehicles on Roads and Tracks II, Springer Science and Business Media Deutschland GmbH , 2022, p. 1005-1014Conference paper (Refereed)
    Abstract [en]

    Tyres are a vital component for handling and load carrying while also contributing to the operating cost and environmental impact. The innovations in tyre design are driven by the need to reduce greenhouse gases and to make a better compromise between conflicting tyre properties. To accurately simulate tyres and to make these compromises a representative rubber model needs to be incorporated with strain amplitude dependency for the storage and loss modulus (the Fletcher-Gent effect). Prony series is a commonly used viscoelastic model in tyre simulations but it does not take into account the Fletcher-Gent effect and e.g. possible nonlinearities due to axle load variations are not feasible to simulate. The Fletcher-Gent effect can be modelled using parallel rheological framework (PRF), which can consist of any combination of parallel material models. Nonlinear viscoelastic models have strain amplitude dependency for the storage modulus but single nonlinear parameters lose their clarity in a PRF. Another approach is to combine a linear viscoelastic model with plasticity as is done in this article. Here, an FE truck tyre is developed and used with a viscoplastic PRF model that utilises Prony series with Mooney-Rivlin hyperelasticity and multiple plastic networks. The benefit of this combination is that the strain amplitude and frequency dependency of the storage and loss modulus are separated, which makes parameter studies simpler. The article shows that an FE truck tyre with a viscoplastic PRF model can be used in different simulations to study e.g. steady-state rolling, footprint, vertical stiffness and longitudinal tyre forces.

  • 34.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Väg- och spårfordon samt konceptuell fordonsdesign.
    A semi-physical thermodynamic non-stationary rolling resistance model with nonlinear viscoelasticityManuscript (preprint) (Other academic)
    Abstract [en]

    Rolling resistance dictates a large part of the energy consumption of trucks. Therefore, it is necessary to have a sound understanding of the parameters affecting rolling resistance. This article proposes a semi-physical thermodynamic tyre rolling resistance model, which captures the essential properties of rolling resistance, such as non-stationary changes due to temperature effects and the strain amplitude dependency of the viscous properties. In addition, the model includes cooling effects from the surroundings. Both tyre temperature and rolling resistance are obtained simultaneously in the simulation model for each time step. The nonlinear viscoelasticity in rubber is modelled using a Bergström-Boyce model, where the viscous creep function is scaled with temperature changes. The cooling of the tyre is considered with both convective and radiative cooling. Finally, the article explains different material parameters and their physical meaning. Additionally, examples of how the model could be used in parameter studies are presented.

  • 35.
    Hyttinen, Jukka
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. Scania CV AB, Södertälje, Sweden; The Centre for ECO2 Vehicle Design, KTH Royal Institute of Technology, Stockholm, Sweden.
    Österlöf, Rickard
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. Scania.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Development of a vehicle-road interaction analysis framework for truck tyres2021In: Proceedings of the Resource Efficient Vehicles Conference - 2021 (rev2021), 2021, p. 132-137Conference paper (Other academic)
  • 36.
    Jerrelind, Jenny
    KTH, Superseded Departments (pre-2005), Aeronautical and Vehicle Engineering.
    Design and Control of Products Including Parts with Impacts2004Doctoral thesis, comprehensive summary (Other scientific)
    Abstract [en]

    Today's product development process should be rapid andcost-efficient, and should result in innovative and reliableproducts. A crucial factor is the dynamic behaviour of theproduct.

    This thesis focuses on theoretical, numerical andexperimental approaches to achieve a comprehensiveunderstanding of dynamical phenomena occurring in nonlinearproducts, especially in products with parts that includeimpacts. The aim is to show the usefulness of nonlineartheories to better understand and optimise the dynamicbehaviour of products and thereby account for nonlinearphenomena already in the product development process.

    This is achieved through an investigation of researchefforts in the field of nonlinear dynamics; identification ofimportant research directions; a study on the effect ofcouplings between nonlinear parts; a detailed study on thedynamic behaviour of a product component; investigations oflow-cost strategies for controlling the dynamics of a nonlinearsystem; and the design and implementation of experimentalset-ups of two studied products.

    The investigation of research efforts shows that nonlinearparts are frequently included in products. Most common areparts that are nonlinear due to impacts and friction. Twoimportant areas are identified; to study coupling effectsbetween nonlinear subsystems and to study how nonlinearanalysis can be used to improve existing designs.

    Considering the studied products; a pantograph on a trainand a Braille printer, it can be concluded that thecharacteristics of a part can largely affect the dynamicbehaviour of the product. Typical nonlinear behaviour, such ascoexisting solutions and irregular motions, do occur. Theanalysis of the pan- tograph motion shows important aspects toconsider in the modelling process; coupling effects. In thecase of the Braille printer it is shown possible to create alow-cost control, by taking advantage of an existingdiscontinuity, to achieve a desired motion.

    Altogether, this work contributes to improved understandingof the be- haviour of nonlinear parts in products, especiallythose including impacts, pro- viding greater knowledge aboutaspects to consider in the design process.

    Keywords:Nonlinear Dynamics, Impacts, Discontinuities,Subsystems, Chaos, Irregular Behaviour, Printer Dynamics,Suspensions, Coupled Systems, Control.

    Download full text (pdf)
    FULLTEXT01
  • 37.
    Jerrelind, Jenny
    KTH, Superseded Departments (pre-2005), Vehicle Engineering.
    Effects of nonlinear dynamics in engineering systems2001Licentiate thesis, comprehensive summary (Other scientific)
  • 38.
    Jerrelind, Jenny
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.
    Allen, Paul
    Univ Huddersfield, Inst Rail Res, Huddersfield, W Yorkshire, England..
    Gruber, Patrick
    Univ Surrey, Ctr Automot Engn, Guildford, Surrey, England..
    Berg, Mats
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Contributions of vehicle dynamics to the energy efficient operation of road and rail vehicles2021In: Vehicle System Dynamics, ISSN 0042-3114, E-ISSN 1744-5159, Vol. 59, no 7, p. 1114-1147Article in journal (Refereed)
    Abstract [en]

    This review addresses efforts made within the field of vehicle dynamics to contribute to the energy efficient operation of road and rail vehicles. Selected investigations of the research community to develop technology solutions to reduce energy consumption are presented. The study explores the impact and potential of relatively mature technologies such as regenerative braking, but also recent research directions that are seeking to develop solutions such as regenerative suspensions, a concept common to both transport modes. Specifically for road vehicles, the study includes rear wheel steering, camber control and torque vectoring, and for rail vehicles active steering and light-weighting. Operationally, there would appear to be great potential for rail vehicles in the wider adoption of connected driver advisory systems, and automatic train control systems, including the application of machine learning techniques to optimise train speed trajectories across a route. Similarly, for road vehicles, predictive and cooperative eco-driving strategies show potential for significant energy savings for connected autonomous vehicles.

  • 39.
    Jerrelind, Jenny
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Dankowicz, Harry
    Virginia Polytechnic Institute and State University, Engineering Science and Mechanics, Virginia, USA.
    A global control strategy for efficient control of a Braille impact hammer2006In: Journal of Vibration and Acoustics-Transactions of the ASME, ISSN 1048-9002, E-ISSN 1528-8927, Vol. 128, no 2, p. 184-189Article in journal (Refereed)
    Abstract [en]

    A combined control scheme relying on feedback-based local control in the vicinity of periodic system responses and global control based on a coarse-grained approximation to the nonlinear dynamics is developed to achieve a desirable dynamical behavior of a Braille printer impact hammer The proposed control methodology introduces discrete changes in the position of a system discontinuity at opportune moments during the hammer motion while the hammer is away from the discontinuity, thereby exploiting the recurrent contacts with the discontinuity to achieve the desired changes in the transient dynamics. It is argued that, as the changes in the position of the discontinuity affect the motion only indirectly through changes in the timing and state at the subsequent contact, the control actuation can be applied over an interval of time during the free-flight motion as long as it is completed prior to contact. A forced, piecewise smooth, single-degree-of freedom model of a Braille impact hammer is used to illustrate the methodology and to yield representative numerical results.

  • 40.
    Jerrelind, Jenny
    et al.
    KTH, Superseded Departments (pre-2005), Aeronautical and Vehicle Engineering.
    Dankowicz, Harry
    Virginia Polytechnic Institute and State University, Virginia, USA.
    Low-Cost Control of Impact Hammer Performance2003In: ASME Conference Proceedings: Design Engineering Technical Conferences, ASME Press, 2003, Vol. 2003, p. 1547-1554Conference paper (Refereed)
    Abstract [en]

    This paper considers the dependence of the performance of a Braille printer impact hammer on system parameters, specifically the lag time between subsequent current pulses and the location of a back stop constraining the oscillations of the hammer core. Here, the goal is to improve the printer speed while maintaining readability of the Braille type and preventing tears in the paper. Based on observations of the limit sets for the hammer-core dynamics, a low-cost feedback control algorithm is proposed for affecting the stability of otherwise unstable periodic oscillations with more desirable operating characteristics.

  • 41.
    Jerrelind, Jenny
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Nybacka, Mikael
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Simulation of Vehicle-Overhead Power System Interaction on Electric Roads2012In: Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2012Conference paper (Refereed)
    Abstract [en]

    Due to the upcoming lack of oil and the environmental problems that conventional internal combustion engines are causing, electric vehicles have gained a growing interest during recent years. One solution to improve the efficiency of the existing road network is to make use of electric roads equipped with an overhead power system, thereby allowing also long-distance truck and bus transports to be powered by electricity without the need of heavy, bulky and expansive batteries.

    Providing electric power using an overhead power system has primarily been used in railway applications and only to some extent in road applications, for example in the case of trolley buses in urban areas. In this study, an overhead catenary system providing electric power to a long-distance truck by means of a pantograph mechanism that collects power through sliding contact with the overhead wire is analysed through simulation.

    A model of a truck equipped with a pantograph is developed and its interaction with an overhead catenary system model is simulated using the finite element method. The current collection quality is evaluated by analysing the pantograph-catenary contact force variation during the influence of different disturbances such as road irregularities and contact wire vibrations due to multiple pantographs.

    The study is an assessment of the possibility of using a conventional overhead power system developed for trains in a new context by providing power to long-distance road transports. The results show that the investigated disturbances influence the dynamics of the studied truck-pantograph-catenary system, nevertheless the contact force variation is within the allowed range according to the technical specifications for interoperability (TSI) for trains. It can be concluded that an overhead power system is a promising solution for a more environmentally friendly energy supply for trucks and buses at specific road sections.

    Download full text (pdf)
    fulltext
  • 42.
    Jerrelind, Jenny
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Edrén, Johannes
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Li, Shiruo
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Davari, Mohammad Mehdi
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Stensson Trigell, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Exploring active camber to enhance vehicle performance and safety2013Conference paper (Refereed)
    Abstract [en]

    The aim of this study is to evaluate optimal active camber strategies for improvement of vehicle performance and safety during limit handling. Numerical optimisation is used to find solutions on how the active camber should be controlled and coordinated in cooperation with individual braking and front axle steering. Based on the characteristics of a multi-line brush tyre model, a Simple Magic Formula description is developed where camber dependency, load sensitivity and first order speed dependent relaxation dynamics are included. The vehicle is analysed during an evasive manoeuvre when the vehicle is running at the limit. It is evident from the results that active camber control can improve safety and performance during an avoidance manoeuvre.

  • 43.
    Jerrelind, Jenny
    et al.
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Lopez Arteaga, Ines
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Kari, Leif
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Marcus Wallenberg Laboratory MWL. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Effects of non-linear wheel suspension bushing on vehicle response2012In: Proceedings of the ASME Design Engineering Technical Conferences And Computers And Information In Engineering Conference, Vol 6, ASME Press, 2012, p. 615-622Conference paper (Refereed)
    Abstract [en]

    This work presents an analysis of the effects of non-linear characteristics of a top mount bushing in the wheel suspension of a vehicle when evaluating vehicle characteristics such as comfort and handling. The investigation is performed by comparing simulation results from a quarter car model when using a non-linear bushing model and an approximated linear bushing model. It is revealed when analysing the results that there are differences in the response when comparing measures such as sprung mass acceleration, rattle space ratio and tyre-ground contact force. The conclusion is that the more detailed bushing model mainly affects the acceleration levels especially at high frequencies where the linear model underestimates the acceleration. The rattle space ratio and tyre-ground contact force are also affected but not to the same extent.

  • 44.
    Jerrelind, Jenny
    et al.
    KTH, Superseded Departments (pre-2005), Vehicle Engineering. Luleå University of Technology, Division of Computer Aided Design, Department of Mechanical Engineering, Sweden.
    Stensson, Annika
    Luleå University of Technology, Division of Computer Aided Design, Department of Mechanical Engineering, Sweden.
    Braille printer Dynamics1999In: Proceedings of the ASME Design Engineering Technical Conferences, 1999Conference paper (Other academic)
  • 45.
    Jerrelind, Jenny
    et al.
    KTH, Superseded Departments (pre-2005), Aeronautical and Vehicle Engineering.
    Stensson, Annika
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Nonlinear dynamic behaviour of coupled suspension systems2003In: Meccanica (Milano. Print), ISSN 0025-6455, E-ISSN 1572-9648, Vol. 38, no 1, p. 43-59Article in journal (Refereed)
    Abstract [en]

    A two degrees of freedom model of two coupled suspension systems characterised by piecewise linear stiffness has been studied. The system, representing a pantograph current collector head, is shown to be sensitive to changes in excitation and system parameters, possessing chaotic, periodic and quasiperiodic behaviour. The coupled system has a more irregular behaviour with larger motions than the uncoupled suspension system, indicating that the response from the uncoupled suspension system cannot be used as a worst case measure. Since small changes in system parameters and excitation affect the results drastically then wear and mounting as well as actual operating conditions are crucial factors for the system behaviour.

  • 46.
    Jerrelind, Jenny
    et al.
    Luleå University of Technology, Division of Computer Aided Design, Department of Mechanical Engineering, Sweden.
    Stensson, Annika
    Luleå University of Technology, Division of Computer Aided Design, Department of Mechanical Engineering, Sweden.
    Nonlinear dynamics of parts in engineering systems2000In: Chaos, Solitons & Fractals, ISSN 0960-0779, E-ISSN 1873-2887, Vol. 11, no 15, p. 2413-2428Article in journal (Refereed)
    Abstract [en]

    By definition, chaotic vibrations arise from nonlinear deterministic physical systems or non-random differential or difference equations. In numerous engineering systems there exist nonlinearities which might affect the dynamic behaviour of the system. The objectives in this work are to summarise previous work on nonlinear dynamics of engineering parts and products and to investigate if research on how nonlinear parts can effect the total behaviour of the products have been performed. It is found that common nonlinear parts are machine elements such as gears, bearings, brakes and suspension systems. The most studied part in a product is of impact hammer type. The products are ordinary products, from searing machines, drilling machines and printers to railway vehicles. In order to be able to design reliable products the methodology should be further developed to enable use by engineers. One can conclude that the effect of nonlinear parts on the total system behaviour is still a fairly uninvestigated area.

  • 47.
    Mårtensson, Jonas
    et al.
    KTH, School of Electrical Engineering (EES), Automatic Control. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre.
    Nybacka, Mikael
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
    Evaluation of Safety Distance in Vehicle Platoons by Combined Braking and Steering2012In: Proceedings of 11th International Symposium on Advanced Vehicle Control, Sept 9-12, 2012, Seoul, Korea, Japan Society of Mechanical Engineers (JSAE) , 2012Conference paper (Other academic)
    Abstract [en]

    Platooning is a way to increase the traffic flow and capacity on roads to handle the upcoming problems of traffic congestion and exhaust emissions. The aim with this work is to evaluate if the safety distance of platooning vehicles can be further reduced when both lateral and longitudinal control is implemented. The idea is that when the vehicle in front suddenly brakes the vehicle behind, if needed, is steered aside while braking and stops beside the preceding vehicle. The analysis is performed using a game theoretical approach and different detailed vehicle models. Results show that the safety distance can be reduced.

    Download full text (pdf)
    fulltext
  • 48.
    O'Reilly, Ciarán J.
    et al.
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Boij, SusannKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Marcus Wallenberg Laboratory MWL.Casanueva, CarlosKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Rail Vehicles.Göransson, PeterKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Marcus Wallenberg Laboratory MWL.Jerrelind, JennyKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics.Karlsson Hagnell, MathildaKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.Rothhämel, MalteKTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.Rumpler, RomainKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics, Marcus Wallenberg Laboratory MWL.Wennhage, PerKTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Proceedings of the Resource Efficient Vehicles Conference - 2021 (rev2021)2021Conference proceedings (editor) (Other academic)
    Abstract [en]

    rev2021 was the first edition of the conference on Resource Efficient Vehicles, held online on 14-16 June 2021. This vehicle-centric conference aims to bring together participants from academia, industry and public agencies to discuss research from all relevant fields connected to resource efficiency in all motorised modes of transport and interdependent surrounding systems. 

    The theme of this multidisciplinary conference is Resolving Functional Conflicts in Vehicle Design, a theme explored through topics including modelling for multifunctional design; making trade-offs; efficient use of materials and space; integrating new solutions; transforming the product system; transforming the vehicle-transport system; sustainable design; and early-stage design. 

    The 2021 edition of the conference consisted of 40 selected papers for presentation at the conference, complemented with four workshops, five keynote lectures from invited speakers, and a concluding panel discussion with four invited participants. It was organised by the Centre for ECO2 Vehicle Design at KTH Royal Institute of Technology in Stockholm.

    Download full text (pdf)
    rev2021_proceedings
  • 49.
    Papaioannou, Georgios
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Haoran, Zhang
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Active and semi-active suspension systems for minimising tyre wear in articulated vehicles2021Conference paper (Refereed)
  • 50.
    Papaioannou, Georgios
    et al.
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Haoran, Zhang
    KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Jerrelind, Jenny
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Drugge, Lars
    KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Vehicle Engineering and Solid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.
    Active and Semiactive Suspension Systems for Minimizing Tire Wear in Articulated Vehicles2024In: Tire Science and Technology, ISSN 0090-8657, Vol. 52, no 1, p. 15-33Article in journal (Refereed)
    Abstract [en]

    Electric and hybrid propulsion systems for articulated vehicles have been gaining increased attention, with the aim to decrease exhaust particle emissions. However, the more environmentally-friendly electric or hybrid articulated vehicles are expected to have increased nonexhaust pollution-related sources because of their significantly increased mass compared with conventional vehicles. One of the main sources of nonexhaust pollution is tire wear, which could potentially cancel the benefits of removing the exhaust through electrification. Tire wear is mainly affected by internal (tire structure and shape) and external (suspension configuration, speed, road surface, etc.) factors. This work focuses on suspension systems and, more specifically, on the ability of active and semiactive suspensions to decrease tire wear in an articulated vehicle. In this direction, an articulated vehicle model that incorporates the tread in its modeling is built to study tire wear during cornering over a class C road. A novel active suspension design based on the H approach is suggested in this work and is compared with passive, semiactive, and other active suspension systems. The suspension systems are also compared mainly with regard to tire wear levels but also with other vehicle performance aspects (i.e., comfort and road holding). The Hop active suspension design is the most effective in decreasing tire wear, with decreases of about 8% to 11%, but without neglecting the rest of the objectives.

12 1 - 50 of 93
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf