Change search
Refine search result
1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Andin, Josefine
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Dealing with Digits: Arithmetic, Memory and Phonology in Deaf Signers2014Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Deafness has been associated with poor abilities to deal with digits in the context of arithmetic and memory, and language modality-specific differences in the phonological similarity of digits have been shown to influence short-term memory (STM). Therefore, the overall aim of the present thesis was to find out whether language modality-specific differences in phonological processing between sign and speech can explain why deaf signers perform at lower levels than hearing peers when dealing with digits. To explore this aim, the role of phonological processing in digit-based arithmetic and memory tasks was investigated, using both behavioural and neuroimaging methods, in adult deaf signers and hearing non-signers, carefully matched on age, sex, education and non-verbal intelligence. To make task demands as equal as possible for both groups, and to control for material effects, arithmetic, phonological processing, STM and working memory (WM) were all assessed using the same presentation and response mode for both groups. The results suggested that in digit-based STM, phonological similarity of manual numerals causes deaf signers to perform more poorly than hearing non-signers. However, for  digit-based WM there was no difference between the groups, possibly due to differences in allocation of resources during WM. This indicates that similar WM for the two groups can be generalized from lexical items to digits. Further, we found that in the present work deaf signers performed better than expected and on a par with hearing peers on all arithmetic tasks, except for multiplication, possibly because the groups studied here were very carefully matched. However, the neural networks recruited for arithmetic and phonology differed between groups. During multiplication tasks, deaf signers showed an increased  reliance on cortex of the right parietal lobe complemented by the left inferior frontal gyrus. In contrast, hearing non-signers relied on cortex of the left frontal and parietal lobes during multiplication. This suggests that while hearing non-signers recruit phonology-dependent arithmetic fact retrieval processes for multiplication, deaf signers recruit non-verbal magnitude manipulation processes. For phonology, the hearing non-signers engaged left lateralized frontal and parietal areas within the classical perisylvian language network. In deaf signers, however, phonological processing was limited to cortex of the left occipital lobe, suggesting that sign-based phonological processing does not necessarily activate the classical language network. In conclusion, the findings of the present thesis suggest that language modality-specific differences between sign and speech in different ways can explain why deaf signers perform at lower levels than hearing non-signers on tasks that include dealing with digits.

  • 2.
    Andin, Josefine
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Pharmacological and environmental modulations of the rat glutamatergic system2006Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and it is implicated in neural transmission, learning, memory processes and neuronal plasticity. In the glutamatergic synapse two main components are present; the glutamate receptors and the glutamate transporters. The receptors, the NMDA, AMPA, kainite and the metabotroptic receptors, are responsible for conveying neural transmission, including long term potentiation (LTP), synaptic strengthening and modification. The transporters, located to the neuronal membrane and to the membranes of surrounding astrocytes, regulates the extracellular concentration of glutamate and thereby the duration of the synaptic signal.

    Alterations in both receptor and transporter systems have been suggested to be important in the pathogenesis of several acute and chronic nervous system diseases, such as psychosis, mood disorders, epilepsy, Parkinson's disease and Alzheimer's disease. The pathophysiology of these disorders is not yet completely understood and the involvement of glutamate is unclear. In this thesis we have sought to investigate the role of the glutamatergic system in the treatment of mood disorders and dementia. The antidepressant drug amitriptyline exerts its main effects on the serotonergic and noradrenergic systems and the antidementia drug rivastigmine acts mainly on the cholinergic system. However, given the close relationship between different neurotransmitter systems we have investigated the influence of amitriptyline and rivastigmine on the mRNA expression of the neuronal transporter, EAAC1, in rats. The results showed for the first time an involvement of EAAC1 in amitriptyline and rivastigmine treatment. Amitriptyline induced an acute increase in EAAC1 mRNA expression, which 24 hour after administration returned to baseline levels. Chronic treatment, on the other hand, induces a significant decrease in cortical areas, which we suggest results in enhanced neuronal transmission. Rivastigmine treatment, acute as well as chronic, induced increases in the mRNA expression in hippocampus. We hypothesize that this counteracts the excitotoxic glutamate levels seen in Alzheimer's disease.

    Further, environmental enrichment has been shown to have beneficial effects on capillary supply, the number of glial cells and dendritic spines, the thickness and weight of cortex, the concentration of cholinesterase, LTP and synaptic strength in animals. It has also been reported that humans that lead an active life have a reduced risk of developing Alzheimer's disease. This suggests that an active and stimulated life may have a protective effect against dementia in man, by creating a cognitive reserve which provides a buffer against brain pathology or age-related changes. We investigated the influence of environmental enrichment on the mRNA expression of NMDA and AMPA receptors and on EAACl and showed for the first time that EAAC1 mRNA is decreased after environmental enrichment. This is probably followed by an increase of glutamate in the synapse, which in turn leads to enhanced neuronal transmission including enhanced memory formation and learning. Furthermore, we confirmed in greater detail previous findings on the upregulation of NMDA mRNA and show that the regulation is regionally and hemisphere specific. We also confirm that AMPA mRNA is not per se changed by environmental enrichment in adult animals.

    This work provides further evidence about the involvement of the glutamatergic system in affective and cognitive disorders. Improved knowledge of the glutamatergic system will contribute to the development of strategies aimed at limiting pathological changes associated with glutamatergic dysfunctions.

  • 3.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Dahlström, Örjan
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Fransson, Peter
    Karolinska institutet, Department of Clinical Neuroscience.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Deaf signers are less reliant than hearing non-signers on fact retrieval from verbal long term memory during arithmetic processing: fMRI evidence2015Conference paper (Refereed)
  • 4.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Dahlström, Örjan
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Karolinska institutet, Department of Clinical Neuroscience.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Greater reliance on magnitude manipulation during mental arithmetic in deaf signers compared to hearing non-signers: fMRI evidence2015Conference paper (Refereed)
    Abstract [en]

    Evidence suggests that the lag reported in mathematics for deaf signers derives from difficulties related to verbal processing of numbers, whereas magnitude processing seems unaffected by deafness. Neuroimaging evidence from hearing individuals suggests that verbal processing of numbers engages primarily left angular gyrus (lAG), whereas magnitude processing engages primarily the horizontal portion of the right intraparietal sulcus (rHIP). In a ROI analysis of brain imaging data from 16 adult deaf signers and 16 adult hearing non-signers, who did not differ on sex, age or education, we examined if activity in lAG and rHIP changed as a result of task (multiplication vs subtraction) and group (deaf signers and hearing non-signers). We found a significant main effect of brain region (F(1,30) = 117.00, p < .001, η_p^2 = .80) and an interaction effect between region and group (F(1,30) = 20.70, p < .001, η_p^2 = .41). Further analyses showed that there were no significant differences in average activation between groups in lAG (F(1,30) = 0.16, p = .70). However, in rHIP deaf signers showed significantly greater average activation compared to non-signers (F(1,30) = 15.20, p < .001, η_p^2 = .34). There were no significant differences in activation between subtraction and multiplication (F(1,30) = 0.66, p = .42) and no behavioural differences between groups (F(1,30) = 1.70, p = .20). These results suggest that when engaging in arithmetic tasks deaf signers successfully make use of qualitatively difference processes, compared to hearing non-signers, with stronger emphasis on brain regions relating to magnitude manipulation.

  • 5.
    Andin, Josefine
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Enz, Albert
    Neuroscience Research, The Novartis Institutes for BioMedical Research, Basel, Switzerland.
    Gentsch, Conrad
    Neuroscience Research, The Novartis Institutes for BioMedical Research, Basel, Switzerland.
    Marcusson, Jan
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Rivastigmine as a Modulator of the Neuronal Glutamate Transporter rEAAC1 mRNA Expression2005In: Dementia and Geriatric Cognitive Disorders, ISSN 1420-8008, E-ISSN 1421-9824, Vol. 19, no 1, p. 18-23Article in journal (Refereed)
    Abstract [en]

    Alzheimer’s disease is a neurodegenerative disorder that affects the cholinergic, glutamatergic and monoaminergic systems in the neocortex and hippocampus. Today, the major pharmacological treatment involves the use of acetylcholinesterase inhibitors (AChEIs). In this study, an in situ hybridisation technique (using digoxigenin-labelled cRNA probes) was used to elucidate changes in mRNA expression of the neuronal glutamate transporter, rat excitatory amino carrier 1 (rEAAC1), after treatment with the AChEI rivastigmine. Compared with saline-treated rats, the rats subchronically (3 days) and chronically (21 days), but not acutely, treated with rivastigmine showed a significant increase in rEAAC1 mRNA expression in the hippocampal areas cornu anterior 1 (CA1), CA2, CA3 and dentate gyrus (p < 0.01), but not in the cortical areas. These results provide the first evidence that the glutamatergic system is modulated following acetylcholinesterase inhibition by rivastigmine, a finding, which is likely to be of importance for the clinical effects.

  • 6.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Karolinska Institutet.
    Dahlström, Örjan
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Deaf signers and hearing non-signers recruit similar networks for arithmetic and phonological tasks2013Conference paper (Other academic)
    Abstract [en]

    Profoundly deaf individuals sometimes have difficulty with arithmetic and phonological tasks. In the present study we investigate if these differences can be attributed to differences in recruitment of neurobiological networks. Seventeen hearing non-signers (HN) and sixteen deaf signers (DS) matched on age, gender and non-verbal intelligence took part in an fMRI study. In the scanner three digit/letter pairs were visually presented and the participants performed six different blocked tasks tapping processing of digit and letter order, multiplication, subtraction and phonological ability. Data were analysed using two 2x2x2 ANOVAs; process (arithmetic, language) x level (high, low) x group (DS, HN). A main effect of process revealed language networks in the left inferior frontal gryus, supramarginal gyrus, fusiform gyrus and insula. Arithmetic networks included left middle orbital gyrus and superior medial gyrus. A main effect of level revealed low level processing (digit/letter order) in the right middle occipital gyrus and the right precuneus and high level processing (subtraction/multiplication/phonological ability) in left inferior frontal gyrus. There was no main effect of group but a significant task x group interaction in the right temporal pole which in DS (but not HN) was activated more for arithmetic than language processing (pfwe = .022) when multiplication was included in the analysis. This region is implicated in conceptual representation. These results suggest that both arithmetic and language are processed similarly by DS and HN with possible between-group differences in the use of conceptual representation in arithmetic and language tasks.

  • 7.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Department of Clinical Neuroscience, Karolinska institute, Stockholm, Sweden.
    Dahlström, Örjan
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Deaf signers use magnitude manipulatioin strategies for mulitplication: fMRI evidence2014Manuscript (preprint) (Other academic)
    Abstract [en]

    Evidence suggests that the lag reported in mathematics for deaf signers derives from difficulties related to the verbal system of number processing as described in the triple code model. For hearing individuals the verbal system has been shown to be recruited for both arithmetic and language tasks. In the present study we investigate for the first time neuronal representations of arithmetic in deaf signers. We examine if the neural network supporting arithmetic and language, including the horizontal portion of the intraparietal sulcus (HIPS), the superior parietal lobule (SPL) bilaterally, the left angular gyrus (AG), pars opercularis (POPE) and pars triangularis (PTRI) of the left inferior frontal gyrus (IFG), is differently recruited for deaf and hearing individuals. Imaging data were collected from 16 deaf signers and 16 well-matched hearing nonsigners, using the same stimulus material for all tasks, but with different cues. During multiplication, deaf signers recruited rHIPS more than hearing non-signers, suggesting greater involvement of magnitude manipulation processes related to the quantity system, whereas there was no evidence that the verbal system was recruited. Further, there was no support for the notion of a common representation of phonology for sign and speech as previously suggested.

  • 8.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Karolinska institutet, Stockholm.
    Dahlström, Örjan
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Multiplication engages phonological networks in Broca's area differently for deaf signers and hearing non-signers2012Conference paper (Other academic)
    Abstract [en]

    In hearing individuals, multiplication relies mainly on the phonological loop while subtraction relies on the visuo-spatial sketchpad (VSSP; Lee & Kang, 2002). Little is known about arithmetic neural networks in deaf signers (DS). Since DS often perform worse than hearing non-signers (NH) on arithmetic in general and multiplication in particular (Traxler, 2000), we hypothesized that there are strategic differences between how groups recruit the phonological loop in multiplication, but not in subtraction, leading to differential activation of phonological processing areas in left inferior frontal gyrus (Broca’s area). We investigated this using a blocked fMRI-design in which nine DS and 17 HN matched on age, gender, education and non-verbal intelligence (Raven & Raven, 1998) were tested on tasks of multiplication, subtraction and phonology (rhyme). The contrasts rhyme versus multiplication and rhyme versus subtraction were examined across groups within the region of interest defined by a probability map of Broca’s area (Amunts, 1999). We observed a significant interaction between task (multiplication and rhyme) and group (F = 12.64, p = .034, FWE-corrected), where the HN showed higher activation for rhyme than for multiplication (T = 4.55, p = .001, FWE-corrected) whereas there were no differences in activations between tasks for DS. For subtraction versus rhyme no interaction with group was found. These results suggest that there are differences between DS and HN in the phonology dependent neural networks in Broca’s area used during multiplication, which may be part of the explanation for poorer performance in DS.

  • 9.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Karolinska University Hospital, Stockholm, Sweden.
    Ingvar, Martin
    Karolinska University Hospital, Stockholm, Sweden.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Phonological processing during arithmetic processing across language modalities2011Conference paper (Other academic)
  • 10.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Fransson, Peter
    Karolinska University Hospital, Stockholm.
    Ingvar, Martin
    Karolinska University Hospital, Stockholm.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Phonological recruitment during arithmetic processing across language modalities2011Conference paper (Other academic)
  • 11.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Fransson, Peter
    Karolinska Institute, Sweden.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Phonology and arithmetic in the language-calculation network2015In: Brain and Language, ISSN 0093-934X, E-ISSN 1090-2155, Vol. 143, p. 97-105Article in journal (Refereed)
    Abstract [en]

    Arithmetic and language processing involve similar neural networks, but the relative engagement remains unclear. In the present study we used fMRI to compare activation for phonological, multiplication and subtraction tasks, keeping the stimulus material constant, within a predefined language-calculation network including left inferior frontal gyrus and angular gyrus (AG) as well as superior parietal lobule and the intraparietal sulcus bilaterally. Results revealed a generally left lateralized activation pattern within the language-calculation network for phonology and a bilateral activation pattern for arithmetic, and suggested regional differences between tasks. In particular, we found a more prominent role for phonology than arithmetic in pars opercularis of the left inferior frontal gyrus but domain generality in pars triangularis. Parietal activation patterns demonstrated greater engagement of the visual and quantity systems for calculation than language. This set of findings supports the notion of a common, but regionally differentiated, language-calculation network. (C) 2015 The Authors. Published by Elsevier Inc.

  • 12.
    Andin, Josefine
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Geriatrics.
    Hallbeck, Martin
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology. Östergötlands Läns Landsting, Centre for Laboratory Medicine, Department of Clinical Pathology and Clinical Genetics.
    Mohammed, Abdul H
    Marcusson, Jan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Östergötlands Läns Landsting, Local Health Care Services in Central Östergötland, Department of Geriatric Medicine.
    Influence of environmental enrichment on steady-state mRNA levels for EAAC1, AMPA1 and NMDA2A receptor subunits in rat hippocampus2007In: Brain Research, ISSN 0006-8993, E-ISSN 1872-6240, Vol. 1174, no 1, p. 18-27Article in journal (Refereed)
    Abstract [en]

    Interaction with the environment has a key role in refining the neuronal circuitry required for normal brain function throughout life. Profound effects of enriched environment have been shown on neuronal structure and chemistry in experimental animals. Epidemiological studies imply that this is true also in man, thus cognitive stimulation has a protective effect on neurodegeneration, e.g., in Alzheimer's disease. Glutamatergic pathways are imperative for cognitive functions, such as memory, learning and long-term potentiation, and relies on the AMPA and NMDA glutamate receptors and the hippocampus, with its specific subregions, is an important anatomical substrate in this. The glutamate signalling is also dependent on a fine-tuned transport system, in the hippocampus primarily achieved by the glutamate transporter EAAC1. In this study we show how environmental enrichment modulates these parts of the glutamatergic system using quantitative in situ hybridisation. This work demonstrates for the first time that environmental enrichment modulates the mRNA expression of EAAC1 which is significantly and region specifically decreased in the hippocampus. We also provide evidence for regional and hemisphere-specific upregulation of NMDA mRNA in the hippocampus after environmental enrichment. The current work also shows that AMPA mRNA of the hippocampus is not per se changed by environmental enrichment in adult animals. Taken together, our results extend the knowledge of the glutamatergic system of specific regions of the hippocampus and its modulation by environmental enrichment and could contribute to the development of strategies aimed at limiting pathological changes associated with glutamatergic dysfunctions. © 2007.

  • 13.
    Andin, Josefine
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Hallbeck, Martin
    Mohammed, Abdul
    Division of Geriatric Medicine, Neurontec, Karolinska Institutet, Sweden.
    Marcusson, Jan
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Environmental enrichment induces changes in the mRNA expression of rat EAAC1 and NMDA but not in AMPAManuscript (preprint) (Other academic)
    Abstract [en]

    Interaction with the environment has a key role in refining the neuronal circuitry required for normal brain function throughout life. Profound effects of enriched environment has been shown on neuronal strucrure and chemistry in experimental animals. Epidemiological studies imply that this is true also in man, thus cognitive stimulation has a protective effect on neurodegeneration, e.g. Alzheimer's disease. Glutamatergic corticocortical pathways are imperative for cognitive functions, such as memory and learning, and long term porenriation relies on the AMPA and NMDAglutamate rcceptors. The glutamate signalling is also dependent on a fine-runed transport system, in the hippocampus primarily by theglutamate transporter EAACl. In this study we show how environmental enrichment modulates these parts of the glutamarergic system using in siru hybridization. This work demonstrates for the first time that environmental enrichment modulates the mRNA expression of EAAC1 which is significantly decreased in hippocampal and cortical areas. We also provide further evidence about the upregulation of NMDA mRNA after environmental enrichement, and show it to have a regionally and hemisphere specific regulation. The current work also confirms that AMPA mRNA is nor per se changed by environmental enrichment in adult animals. Taken together, our results extend the knowledge of the glutamatergic system and its modulation by environmental enrichment and could contribute to the development of strategies aimed at limiting pathological changes associated with glutamatergic dysfunctions.

  • 14.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Orfanidou, Eleni
    University of Crete, Rethymnon, Greece.
    Cardin, Velia
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. University College London, UK.
    Holmer, Emil
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Capek, Cheryl M.
    School of Psychological Science, University of Manchester, UK.
    Woll, Bencie
    University College London, UK.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Similar digit-based working memory in deaf signers and hearing non-signers despite digit span differences2013In: Frontiers in Psychology, ISSN 1664-1078, E-ISSN 1664-1078, Vol. 4, no 942Article in journal (Refereed)
    Abstract [en]

    Similar working memory (WM) for lexical items has been demonstrated for signers and non-signers while short-term memory (STM) is regularly poorer in deaf than hearing individuals. In the present study, we investigated digit-based WM and STM in Swedish and British deaf signers and hearing non-signers. To maintain good experimental control we used printed stimuli throughout and held response mode constant across groups. We showed that deaf signers have similar digit-based WM performance, despite shorter digit spans, compared to well-matched hearing non-signers. We found no difference between signers and non-signers on STM span for letters chosen to minimize phonological similarity or in the effects of recall direction. This set of findings indicates that similar WM for signers and non-signers can be generalized from lexical items to digits and suggests that poorer STM in deaf signers compared to hearing non-signers may be due to differences in phonological similarity across the language modalities of sign and speech.

  • 15.
    Andin, Josefine
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Rudner, Mary
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Rönnberg, Jerker
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research.
    Arithmetic and phonological processes in deaf native signers2008In: The first meeting of the federation of the European societies of neuropsychology,2008, 2008Conference paper (Other academic)
  • 16.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Arithmetic and phonological processes in deaf signers and hearing non-signers - a cognitive study2008Conference paper (Other academic)
  • 17.
    Andin, Josefine
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Rudner, Mary
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Rönnberg, Jerker
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research.
    Arithmetic and phonological processing in deaf native signers and hearing non-signers2008In: First European Congress of Neuropsychology,2008, 2008Conference paper (Other academic)
  • 18.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Complex symbol precessing in deaf native signers and hearing non-signers2009Conference paper (Other academic)
  • 19.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Deaf signers use phonology to do arithmetic2014In: Learning and individual differences, ISSN 1041-6080, E-ISSN 1873-3425, Vol. 32, p. 246-253Article in journal (Refereed)
    Abstract [en]

    Deaf students generally lag several years behind hearing peers in arithmetic, but little is known about the mechanisms behind this. In the present study we investigated how phonological skills interact with arithmetic. Eighteen deaf signers and eighteen hearing non-signers took part in an experiment that manipulated arithmetic and phonological knowledge in the language modalities of sign and speech. Independent tests of alphabetical and native language phonological skills were also administered. There was no difference in performance between groups on subtraction, but hearing non-signers performed better than deaf signers on multiplication. For the deaf signers but not the hearing non-signers, multiplicative reasoning was associated with both alphabetical and phonological skills. This indicates that deaf signing adults rely on language processes to solve multiplication tasks, possibly because automatization of multiplication is less well established in deaf adults.

  • 20.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Dealing with digits: short-term memory differences in deaf signers and hearing non-signers2011Article in journal (Refereed)
  • 21.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Language modality specific affects on simple spans in deaf signers and hearing non-signers2010In: Second European Congress of Neuropsychology, September, Amsterdam, 2010Conference paper (Refereed)
  • 22.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Language modality specific effects on simple spans in deaf signers and hearing non-signers2010Conference paper (Other academic)
  • 23.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Phonological similarity and sensory memory traces modulate span size in deaf signers and hearing non-signers2010Conference paper (Other academic)
  • 24.
    Andin, Josefine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rhyme and Reason - do deaf signers use phonology to do arithmetic?2010Conference paper (Other academic)
  • 25.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability. Linköping University, Faculty of Arts and Sciences.
    Simple spans in deaf signers and hearing non-signers2010In: BEHAVIOURAL NEUROLOGY, ISSN 0953-4180, Vol. 23, no 4, p. 207-208Article in journal (Refereed)
    Abstract [en]

    n/a

  • 26.
    Andin, Josefine
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Linnaeus Centre HEAD.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Linnaeus Centre HEAD.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Linnaeus Centre HEAD.
    Simple spans in deaf signers and hearing nonsigners2010In: Behavioural Neurology, ISSN 0953-4180, E-ISSN 1875-8584, Vol. 23, no 4, p. 207-208Article in journal (Refereed)
  • 27.
    Andin, Josefine
    et al.
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Stenfors, Carina
    Bioscience, Local Discovery, AstraZeneca R&D, Södertälje, Sweden.
    Ross, Svante B
    Bioscience, Local Discovery, AstraZeneca R&D, Södertälje, Sweden.
    Marcusson, Jan
    Linköping University, Department of Neuroscience and Locomotion, Geriatrics. Linköping University, Faculty of Health Sciences.
    Modulation of neuronal glutamate transporter rEAAC1 mRNA expression in rat brain by amitriptyline2004In: Brain Research. Molecular Brain Research, ISSN 0169-328X, E-ISSN 1872-6941, Vol. 126, no 1, p. 74-77Article in journal (Refereed)
    Abstract [en]

    Glutamate transporters regulate the glutamate concentration in the synaptic cleft within the CNS, a regulation required for normal brain function. In several neurological conditions, the amount of glutamate is altered. One reason for the changes in glutamate concentration might be impaired glutamate transporter function. In this study, an in situ hybridisation technique has been used to elucidate changes in mRNA expression of the glutamate transporter, excitatory amino acid carrier 1 (EAAC1), after treatment with the tricyclic antidepressant (TCA) amitriptyline. The results lead to the suggestion that treatment with tricyclic antidepressants leads to changes in the EAAC1 mRNA expression in rat brain suggesting involvement of the glutamate system in the tricyclic treatment of depression.

  • 28.
    Cardin, Velia
    et al.
    University College London, Division of Psychology and Language Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    De Oliveira, Rita
    London South Bank University.
    Andin, Josefine
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Beese, Lilli
    University College London, Deafness Cognition and Language Research Centre.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Working memory and crossmodal plasticity in congenitally deaf individuals2015Conference paper (Other academic)
  • 29.
    Cardin, Velia
    et al.
    Linköping University, Department of Behavioural Sciences and Learning. University College London, Division of Psychology and Language Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Ferraz De Oliveira, Rita
    London South Bank University, School of Applied Science.
    Andin, Josefine
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Beese, Lilli
    University College London, Deafness Cognition and Language Research Centre.
    Woll, Bencie
    Linköping University, Department of Behavioural Sciences and Learning. University College London, Division of Psychology and Language Sciences.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    A working memory role for superior temporal cortex in deaf individuals independently of linguistic content2015Conference paper (Refereed)
    Abstract [en]

    Studies of sign languages have been used to test traditional cognitive models of working memory (WM) that distinguish between verbal and visuospatial WM (e.g. Baddeley, 2003), without considering that sign languages operate in the visuospatial domain. Previous studies have shown that WM mental representations and processes are largely similar for signed and spoken languages (e.g. Rönnberg et al., 2004). However, it is not clear to what extent visual WM processes aid and support sign language WM.

    Here we characterise the neural substrates supporting sign language and visual WM, and the mechanisms that subserve differential processing for signers and for deaf individuals. We conducted a functional magnetic resonance imaging (fMRI) experiment with three groups of participants: deaf native signers, hearing native signers and hearing non-signers. Participants performed a 2-back WM task and a control task on two sets of stimuli: signs from British Sign Language or non-sense objects. Stimuli were composed of point-lights to control for differences in visual features.

    Our results show activation in a fronto-parietal network for WM processing in all groups, independently of stimulus type, in agreement with previous literature. We also replicate previous findings in deaf signers showing a stronger right posterior superior temporal cortex (STC) activation for visuospatial processing, and stronger bilateral STC activation for sign language stimuli.

    Group comparisons further reveal stronger activations in STC for WM in deaf signers, but not for the groups of hearing individuals. This activation is independent of the linguistic content of the stimuli, being observed in both WM conditions: signs and objects. These results suggest a cognitive role for STC in deaf signers, beyond sign language processing.

  • 30.
    Cardin, Velia
    et al.
    University College London, Division of Psychology and Language Sciences.
    Rudner, Mary
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Ferraz de Oliveira, Rita
    London South Bank University, School of Applied Science.
    Su, Merina
    London South Bank University, Institute of Child Health.
    Andin, Josefine
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Beese, Lilli
    University College London, Deafness Cognition and Language Research Centre.
    Woll, Bencie
    University College London, Division of Psychology and Language Sciences.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, Linnaeus Centre HEAD.
    Does the superior temporal cortex have a role in cognitive control as a consequence of cross-modal reorganization?2015Conference paper (Refereed)
  • 31.
    Rudner, Mary
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Andin, Josefine
    Linköping University, Faculty of Arts and Sciences. Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability.
    Rönnberg, Jerker
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research.
    Differences in temporal and spatial processing mechanisms in working memory for signed and spoken language2009In: The 11th European congress of Psychology, Oslo, Norway, 7-10 July 2009.,2009, 2009Conference paper (Refereed)
    Abstract [en]

     Objectives Working memory (WM) capacity is similar for signed (SL) and spoken (SpL) language yet underlying temporal and spatial processing mechanisms may not be identical. To investigate this, two studies with deaf native signers (DS) and hearing non-signers (HN) were conducted. Methods DS and matched HN groups performed WM tasks with varying temporal and spatial demands in study 1 at encoding (temporal, spatial and mixed presentation styles) and in study 2 at retrieval (forward and backward span) and with abstract spatial demands (math span). Results DS performance was inferior with high temporal demands at encoding (temporal style) and retreival (forward span). There was no difference between groups with high spatial order demands at encoding (spatial style) or retrieval (backward span). DS performance was worse when abstract spatial processing was involved (math span). Conclusion WM processing mechanisms for SL and SpL differ for temporal information at encoding and retrieval and for abstract spatial information. 

  • 32.
    Rudner, Mary
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability. Linköping University, Faculty of Arts and Sciences.
    Andin, Josefine
    Linköping University, Department of Behavioural Sciences and Learning, Cognition, Development and Disability. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Working memory, deafness and sign language.2009In: Scandinavian journal of psychology, ISSN 1467-9450, Vol. 50, no 5, p. 495-505Article in journal (Refereed)
    Abstract [en]

    Working memory (WM) for sign language has an architecture similar to that for speech-based languages at both functional and neural levels. However, there are some processing differences between language modalities that are not yet fully explained, although a number of hypotheses have been mooted. This article reviews some of the literature on differences in sensory, perceptual and cognitive processing systems induced by auditory deprivation and sign language use and discusses how these differences may contribute to differences in WM architecture for signed and speech-based languages. In conclusion, it is suggested that left-hemisphere reorganization of the motion-processing system as a result of native sign-language use may interfere with the development of the order processing system in WM.

  • 33.
    Rudner, Mary
    et al.
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Andin, Josefine
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences.
    Rönnberg, Jerker
    Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences. Linköping University, The Swedish Institute for Disability Research.
    Heimann, Mikael
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences.
    Hermansson, Anders
    Sweden and Psychiatric Clinic Höglandet Hospital Eksjö/Nässjö, Sweden.
    Nelson, Keith
    Pennsylvania State University, USA.
    Tjus, Tomas
    University of Gothenburg, Sweden.
    Training Literacy Skills through Sign Language2014In: Deafness and Education International, ISSN 1464-3154, E-ISSN 1557-069X, Vol. 17, no 1, p. 8-18Article in journal (Refereed)
    Abstract [en]

    The literacy skills of deaf children generally lag behind those of their hearing peers. The mechanisms of reading in deaf individuals are only just beginning to be unraveled but it seems that native language skills play an important role. In this study 12 deaf pupils (six in grades 1?2 and six in grades 4?6) at a Swedish state primary school for deaf and hard of hearing children were trained on the connection between Swedish Sign Language and written Swedish using a pilot sign language version of the literacy training software program Omega-is. Literacy skills improved substantially across the 20 days of the study. These literacy gains may have rested upon the specific software-based intervention, upon regular classroom activities, or upon a combination of these factors. Omega-is-d, and similar software utilizing sign language as a component, targets an important mechanism supporting reading development in deaf children and could play an important role in bilingual education refinements.

  • 34.
    Rudner, Mary
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Orfanidou, Eleni
    University of Crete, Department of Psychology.
    Capek, Sheryl M.
    University of Manchester.
    Andin, Josefine
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Karlsson, Thomas
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Dahlström, Örjan
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Kästner, Lena
    Ruhr-University, Bochum.
    Cardin, Velia
    University College London, Department of Cognitive, Perceptual and Brain Sciences.
    Fransson, Peter
    Karolinska University Hospital, Stockholm, Sweden.
    Ingvar, Martin
    Karolinska University Hospital, Stockholm, Sweden.
    Johnsrude, Ingrid
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Woll, Benice
    University College London, Cognitive, Perceptual and Brain Sciences.
    Rönnberg, Jerker
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Sign Language phonology and its role in neurocognition2011Conference paper (Other academic)
  • 35.
    Signoret, Carine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Andin, Josefine
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Johnsrude, Ingrid
    Linköping University, The Swedish Institute for Disability Research. Brain and Mind Institute, National Centre for Audiology, School of Communication Sciences and Disorders, Western University, London, Ontario, Canada.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Cumulative effects of prior knowledge and semantic coherence during speech perception: an fMRI study2015Conference paper (Other academic)
    Abstract [en]

    Semantic coherence and prior knowledge enhance perceptual clarity of degraded speech. Recent study by our team has shown that these two effects interact such that the perceptual clarity of noise-vocoded speech (NVS) is still enhanced by semantic coherence when prior knowledge is available from text cues and prior knowledge enhances perceptual clarity of NVS even when semantic coherence is low (Signoret et al., 2015). Here, we investigated the neural correlates of this interaction. We predicted 1) an effect of matching cues for both sentences with high and low semantic coherence in left-lateralized perisylvian areas (Zekveld et al., 2012) and right superior temporal gyrus (Wild et al., 2012), but stronger for low than for high coherent sentences since more resources are required to process sentences with low semantic coherence in the left inferior frontal gyrus (Obleser and Kotz, 2010) and 2) an effect of semantic coherence in temporal and inferior frontal cortex (Lau et al., 2008). The additive effect of semantic coherence when matching cues were provided should be observed in the angular gyrus (Obleser and Kotz, 2010). Twenty participants (age; M=25.14, SD=5.01) listened to sentences and performed an unrelated attentional task during sparse-imaging fMRI. The sentences had high or low semantic coherence, and were either clear, degraded (6-band NV) or unintelligible (1-band NV). Each spoken word was preceded (200 ms) by either a matching cue or a consonant string. Preliminary results revealed significant main effects of Cue (F(1,228) = 21.26; p < .05 FWE) in the left precentral gyrus, the left inferior frontal gyrus and the left middle temporal gyrus confirming the results of Zekveld et al (2012), but neither the main effect of Coherence nor the interaction between Cue and Coherence survived FWE correction. In accordance with our predictions, contrasts revealed a greater effect of matching cues for low than for high coherent sentences (t(19) = 6.25; p < .05 FWE) in the left superior temporal gyrus as well as left inferior frontal gyrus (BA 44 and 45), suggesting greater involvement of both top-down and bottom-up processing mechanisms during integration of prior knowledge with the auditory signal when sentence coherence is lower. There was a marginally greater effect of semantic coherence (t(19) = 3.58; p < .001unc) even when matching cues were provided in the left angular gyrus, the left middle frontal gyrus and the right superior frontal gyrus, suggesting greater involvement of top-down activation of semantic concepts, executive processes and the phonological store during integration of prior knowledge with the auditory signal when the semantic content of the speech is more readily available.

  • 36.
    Signoret, Carine
    et al.
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Andin, Josefine
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    Johnsrude, Ingrid
    Linköping University, The Swedish Institute for Disability Research. School of Communication Sciences and Disorders, University of Western Ontario, Canada.
    Rudner, Mary
    Linköping University, The Swedish Institute for Disability Research. Linköping University, Department of Behavioural Sciences and Learning, Disability Research. Linköping University, Faculty of Arts and Sciences.
    The interplay between prior knowledge and semantic coherence during processing of degraded speech: an fMRI study2015In: Abstract book: Third International Conference on Cognitive Hearing Science for Communication, 2015, p. 181-181Conference paper (Other academic)
    Abstract [en]

    Degraded speech is rendered more intelligible both by semantic coherence and preceding text cues. Recently, we showed that the perceptual clarity of noise-vo-coded speech (NVS) is still enhanced by semantic coherence when cues are provided and that prior knowledge enhances perceptual clarity of NVS when semantic coherence is low (Signoret et al., 2015). Here, we investigated the neural correlates of this interaction. Twenty participants listened to sentences and performed an unrelated attentional task during sparse-imaging fMRI. The sentences had high or low semantic coherence, and were either clear, degraded (6-band NV) or unintelligible (1-band NV). Each spoken word was preceded (200 ms) by either a matching cue or a consonant string. Preliminary results revealed significant main effects of both Coherence and Cue in the superior temporal gyrus bilaterally and a significant interaction between Coherence and Cue when speech was degraded, in superior and middle temporal gyri bilaterally and left precentral gyrus. Investigation of this interaction revealed greater activation for high compared to low coherent sentences when cues were provided in the left-lateralized regions and greater activation without than with cues when semantic coherence was low in bilateral regions. The opposite contrasts elicited no significant activation. This pattern of results indicates that the increases in perceptual clarity of NVS attributable to semantic coherence and prior knowledge are supported by similar neural mechanisms organized in bilateral temporal regions, but that when perceptual clarity is optimized by both factors, it is supported by left-lateralized mechanisms.

1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf