Change search
Refine search result
1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergkvist, Max
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Iredahl, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Assessment of microcirculation of the skin using Tissue Viability Imaging: A promising technique for detecting venous stasis in the skin2015In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 101, p. 20-25Article in journal (Refereed)
    Abstract [en]

    Background: : Venous occlusion in the skin is difficult to detect by existing measurement techniques. Our aim was to find out whether Tissue Viability Imaging (TiVi) was better at detecting venous occlusion by comparing it with results of laser Doppler flowmetry (LDF) during graded arterial and venous stasis in human forearm skin. Methods: : Arterial and venous occlusions were simulated in 10 healthy volunteers by inflating a blood pressure cuff around the upper right arm. Changes in the concentration of red blood cells (RBC) were measured using TiVi, while skin perfusion and concentration of moving red blood cells (CMBC) were measured using static indices of LDF during exsanguination and subsequent arterial occlusion, postocclusive reactive hyperaemia, and graded increasing and decreasing venous stasis. Results: : During arterial occlusion there was a significant reduction in the mean concentration of RBC from baseline, as well as in perfusion and CMBC (p less than 0.008). Venous occlusion resulted in a significant 28% increase in the concentration of RBC (p = 0.002), but no significant change in perfusion (mean change -14%) while CMBC decreased significantly by 24% (p = 0.02). With stepwise increasing occlusion pressures there was a significant rise in the TiVi index and reduction in perfusion (p = 0.008), while the reverse was seen when venous flow was gradually restored. Conclusion: : The concentration of RBC measured with TiVi changes rapidly and consistently during both total and partial arterial and venous occlusions, while the changes in perfusion, measured by LDF, were less consistent This suggests that TiVi could be a more useful, non-invasive clinical monitoring tool for detecting venous stasis in the skin than LDF.

  • 2.
    Bergkvist, Max
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Zötterman, Johan
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Dermatology and Venerology.
    Iredahl, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Vascular Occlusion in a Porcine Flap Model: Effects on Blood Cell Concentration and Oxygenation.2017In: Plastic and reconstructive surgery. Global open, ISSN 2169-7574, Vol. 5, no 11, article id e1531Article in journal (Refereed)
    Abstract [en]

    Background: Venous congestion in skin flaps is difficult to detect. This study evaluated the ability of tissue viability imaging (TiVi) to measure changes in the concentration of red blood cells (CRBC), oxygenation, and heterogeneity during vascular provocations in a porcine fasciocutaneous flap model.

    Methods: In 5 pigs, cranial gluteal artery perforator flaps were raised (8 flaps in 5 pigs). The arterial and venous blood flow was monitored with ultrasonic flow probes. CRBC, tissue oxygenation, and heterogeneity in the skin were monitored with TiVi during baseline, 50% and 100% venous occlusion, recovery, 100% arterial occlusion and final recovery, thereby simulating venous and arterial occlusion of a free fasciocutaneous flap. A laser Doppler probe was used as a reference for microvascular perfusion in the flap.

    Results: During partial and complete venous occlusion, increases in CRBC were seen in different regions of the flap. They were more pronounced in the distal part. During complete arterial occlusion, CRBC decreased in all but the most distal parts of the flap. There were also increases in tissue oxygenation and heterogeneity during venous occlusion.

    Conclusions: TiVi measures regional changes in CRBC in the skin of the flap during arterial and venous occlusion, as well as an increase in oxygenated hemoglobin during venous occlusion that may be the result of reduced metabolism and impaired delivery of oxygen to the tissue. TiVi may provide a promising method for measuring flap viability because it is hand-held, easy to-use, and provides spatial information on venous congestion.

  • 3.
    Droog Tesselaar, Erik
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
    Assessment of microvascular function by use of transdermal iontophoresis: methodological aspects2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Assessment of the microcirculation is of major importance in understanding the physiology of the vasculature and in assessing te vascular effects of pathological conditions such as diabetes, hypertension and sepsis. Transdermal iontophoresis can be used to non‐invasively introduce vasoactive drugs into the skin. The response to these drugs of the local cutaneous microvasculature can be measured by laser Doppler flowmetry methods. Although these techniques have been used together for over two decades, there are still important methodological issues to be resolved. This work is aimed at optimizing transdermal iontophoresis as a tool for microvascular assessment by focusing on the main methdological issues: non‐specific vasodilatation, drug delivery protocols and analysis of blood flow data.

    Non‐specific vasodilatation, an increase blood flow during iontophoresis of non‐vasoactive compounds, is an important problem as it interferes with the response to the administered drug. By investigating this effect in healthy volunteers, we found that the extent of the non‐specific response differs between the positive and negative electrode and that it is dependent on the voltage over the skin andon the ionic strength of the vehicle in which the drug is dissolved. We also found that the extent of the non‐specific response could be reduced by applying local anesthetics and by pre‐treatment with antihistamine drugs. These results suggest that non‐specific effects could be mediated by depolarization or hyperpolarisation of cells, triggering neural and histamine related mechanisms that finally lead to vasodilatation of the local microvasculature.

    To prevent non‐specific effects from occurring during the experiments, our results show that the current strength and the total electric charge during iontophoresis should be limited to 0.02 mA and12 mC, respectively. Furthermore, drug solutions at physiological ionic strengths should be used. Under these conditions, adequate responses to the most commonly used drugs, acetylcholine (ACh) and sodium nitroprusside (SNP), are obtained while no significant non‐specific vasodilatation occurs.

    The results of our investigations show that blood responses to ACh and SNP applied by a single iontophoretic pulse can well be escribed by conventional dose‐response models, which enables a more powerful analysis and comparison between drugs or possibly patient groups as compared with conventional aalysis methods. Finally, we have incorporated drug transport and physiological response to the local drug concentration during iontophoresis of vasoactve drugs into a single model. Validation of this model using measured responses to ACh and SNP shows that the commonly used assumption that the local drug concentration during iontophoresis is linearly proportional to the electric charge may not be valid.

  • 4.
    Droog Tesselaar, Erik
    et al.
    Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Flejmer, Anna M.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Oncology.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Dasu, Alexandru
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics. The Skandion Clinic, Uppsala, Sweden.
    Changes in skin microcirculation during radiation therapy for breast cancer2017In: Acta Oncologica, ISSN 0284-186X, E-ISSN 1651-226X, Vol. 56, no 8, p. 1072-1080Article in journal (Refereed)
    Abstract [en]

    Abstract:

    Background: The majority of breast cancer patients who receive radiation treatment are affected by acute radiation-induced skin changes. The assessment of these changes is usually done by subjective methods, which complicates the comparison between different treatments or patient groups. This study investigates the feasibility of new robust methods for monitoring skin microcirculation to objectively assess and quantify acute skin reactions during radiation treatment.

    Material and methods: Laser Doppler flowmetry, laser speckle contrast imaging, and polarized light spectroscopy imaging were used to measure radiation-induced changes in microvascular perfusion and red blood cell concentration (RBC) in the skin of 15 patients undergoing adjuvant radiation therapy for breast cancer. Measurements were made before treatment, once a week during treatment, and directly after the last fraction.

    Results: In the treated breast, perfusion and RBC concentration were increased after 1–5 fractions (2.66–13.3 Gy) compared to baseline. The largest effects were seen in the areola and the medial area. No changes in perfusion and RBC concentration were seen in the untreated breast. In contrast, Radiation Therapy Oncology Group (RTOG) scores were increased only after 2 weeks of treatment, which demonstrates the potential of the proposed methods for early assessment of skin changes. Also, there was a moderate to good correlation between the perfusion (r = 0.52) and RBC concentration (r = 0.59) and the RTOG score given a week later.

    Conclusion: We conclude that radiation-induced microvascular changes in the skin can be objectively measured using novel camera-based techniques before visual changes in the skin are apparent. Objective measurement of microvascular changes in the skin may be valuable in the comparison of skin reactions between different radiation treatments and possibly in predicting acute skin effects at an earlier stage.

  • 5.
    Droog Tesselaar, Erik
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Nilsson, Gert E.
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    A protocol for iontophoresis of acetylcholine and sodium nitroprusside that minimises nonspecific vasodilatory effects2004In: Microvascular research, ISSN 0026-2862, Vol. 67, no 2, p. 197-202Article in journal (Refereed)
    Abstract [en]

    Iontophoresis of vasoactive substances is a promising tool for studying pharmacological aspects of the (patho)physiology of the microvasculature. However, nonspecific microvascular responses are a common problem in most protocols used. We studied the effect of current density (mA/cm2), charge density (mC/cm2), drug concentration (mass %) and vehicle concentration (M) on the nonspecific vasodilatation during iontophoresis of sodium chloride, acetylcholine (ACh) and sodium nitroprusside (SNP).

    We found that nonspecific vasodilatation depended on current density and charge density in both anodal and cathodal iontophoresis. The responses to ACh and SNP were dependent on current density, charge density and drug concentration. We found that by limiting current density (<0.01 mA/cm2) and charge density (<7.8 mC/cm2) and with adjusted concentrations for drugs and vehicles, it is possible to prevent nonspecific effects during iontophoresis of ACh and SNP, while maximum drug effects (plateaus in the dose–response curves) are still obtained. These new findings are important for future iontophoresis studies in which vasoactive drugs are used to assess microvascular function because the presented approach has advantages compared to older techniques, which mainly have attempted to suppress or compensate for the nonspecific responses during iontophoresis by the use of local anaesthetics or the measurement of drug-minus-vehicle responses, both of which present well-known experimental shortcomings.

  • 6.
    Droog Tesselaar, Erik
    et al.
    Linköping University, Department of Biomedical Engineering. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences.
    Nonspecific vasodilatation during transdermal iontophoresis: the effect of voltage over the skin2003In: Microvascular research, ISSN 0026-2862, Vol. 65, no 3, p. 172-178Article in journal (Refereed)
    Abstract [en]

    We used laser Doppler perfusion imaging (LDPI) to study nonspecific vasodilatation during iontophoresis. In iontophoresis studies, nonspecific vasodilatation occurs as a result either of galvanic currents or of the applied voltage over the skin. We made dose–response measurements to study the effect of ionic strength of the vehicle on the nonspecific vasodilatation during iontophoresis of sodium chloride and deionized water, while we monitored the voltage over the skin. We found that anodal and cathodal ionotophoresis induced a voltage over the skin that was dependent on the ionic strength of the test solution. The nonspecific vasodilatation during anodal iontophoresis was less pronounced than during cathodal iontophoresis, and was independent of the voltage over the skin. The nonspecific vasodilatation in cathodal iontophoresis was related to the voltage over the skin, and was possibly mediated by depolarization of local sensory nerves. In experiments using cathodal iontophoresis, therefore, the ionic strengths of the vehicle and the drug are important when vasoactive drugs are examined, as the nonspecific vasodilatation needs to be controlled for. As the vasodilatation that we observed was heterogeneously distributed within the area of iontophoresis, LDPI may provide more accurate measurements than conventional laser Doppler perfusion monitoring.

  • 7.
    Elmasry, Moustafa
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Plastic Surgery Unit, Surgery Department, Suez Canal University, Egypt.
    Mirdell, Robin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Steinvall, Ingrid
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Laser speckle contrast imaging in children with scalds: Its influence on timing of intervention, duration of healing and care, and costs2019In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 45, no 4, p. 798-804Article in journal (Refereed)
    Abstract [sv]

    Background

    Scalds are the most common type of burn injury in children, and the initial evaluation of burn depth is a problem. Early identification of deep dermal areas that need excision and grafting would save unnecessary visits and stays in hospital. Laser speckle contrast imaging (LSCI) shows promise for the evaluation of this type of burn. The aim of this study was to find out whether perfusion measured with LSCI has an influence on the decision for operation, duration of healing and care period, and costs, in children with scalds.

    Methods

    We studied a group of children with scalds whose wounds were evaluated with LSCI on day 3–4 after injury during the period 2012–2015. Regression (adjustment for percentage total body surface area burned (TBSA%), age, and sex) was used to analyse the significance of associations between degree of perfusion and clinical outcome.

    Results

    We studied 33 children with a mean TBSA% of 6.0 (95% CI 4.4–7.7)%. Lower perfusion values were associated with operation (area under the receiver-operating characteristic curve 0.86, 95% CI 0.73–1.00). The perfusion cut-off with 100% specificity for not undergoing an operation was ≥191 PU units (66.7% sensitivity and 72.7% accurately classified). Multivariable analyses showed that perfusion was independently associated with duration of healing and care period.

    Conclusion

    Lower perfusion values, as measured with LSCI, are associated with longer healing time and longer care period. By earlier identification of burns that will be operated, perfusion measurements may further decrease the duration of care of burns in children with scalds.

  • 8.
    Ericsson, Elin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 6, p. e0155913-Article in journal (Refereed)
    Abstract [en]

    Ventilator-induced or ventilator-associated lung injury (VILI/VALI) is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT) can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

  • 9.
    Farnebo, Simon
    et al.
    Linköping University, Department of Biomedicine and Surgery, Division of surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Thorfinn, Johan
    Linköping University, Department of Biomedicine and Surgery, Division of surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Hyperaemic changes in forearm skin perfusion and RBC concentration after increasing occlusion times2010In: MICROVASCULAR RESEARCH, ISSN 0026-2862, Vol. 80, no 3, p. 412-416Article in journal (Refereed)
    Abstract [en]

    Tissue occlusion and the hyperaemic response upon reperfusion can be used as a tool to assess microvascular function in various vascular diseases. Currently, laser Doppler flowmetry (LDF) is applied most often to measure hyperaemic responses. In this study, we have applied tissue viability imaging (TiVi) and LDF to measure the change in red blood cell concentration and perfusion in the skin after occlusions of the forearm with increasing duration. We have found that there is a strong correlation between the changes in perfusion and red blood cell (RBC) concentration during post-occlusive hyperaemia (perfusion: r = 0.80; RBC concentration: r = 0.94). This correlation increases with longer occlusion durations (1, 5 and 10 min). Furthermore, for both perfusion and RBC concentration, the maximum responses (perfusion: r(2) = 0.59; RBC concentration: r(2) = 0.78) and the recovery times (perfusion: r(2) = 0.62; RBC concentration: r(2) = 0.91) increase linearly with the duration of the occlusion. Maximum responses and recovery times were more reproducible for RBC concentration (as measured with TiVi) than for perfusion (as measured with LDF). These results show that perfusion and RBC concentration are related during post-occlusive hyperaemia and that TiVi can be used as a tool in the assessment of hyperaemic responses that has advantages in terms of reproducibility, sensitivity and ease of use.

  • 10.
    Folkesson, Tchou
    et al.
    Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden,.
    Samuelsson, Anders
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Intensive Care UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Dahlström, B.
    Berzelius Clinical Research Center, Linköping, Sweden.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    A human vascular model based on microdialysis for the assessment of the vasoconstrictive dose-response effects of noradrenaline and vasopressin in skin: in JOURNAL OF VASCULAR RESEARCH, vol 48, pp 320-3202011In: JOURNAL OF VASCULAR RESEARCH, Karger , 2011, p. 320-320Conference paper (Refereed)
    Abstract [en]

    Microdialysis is a well-established technique for continuous sampling of small, water-soluble molecules within the extracellular fluid space in vivo. It also allows the use of microdoses of drugs, and the simultaneous evaluation of their related effects at the site of action. The present study was an experimental, randomized microdose trial to develop a human vascular model of dose response. We aimed to evaluate a microdialysis dosing method using urea clearance as a marker of druginduced changes in dermal blood flow and metabolism (glucose and lactate) in 12 healthy volunteers. We found that asymptomatic vasoconstriction can be detected by continuous microdialysis measurements of urea clearance in dermal tissue. More importantly, dose-effect relations using the Emax model could be constructed using the corresponding data on drug doses and both the urea clearance-based flow estimates and the changes in concentrations of tissue metabolites. This in vivo human experimental skin model offers an interesting tool with which both the dose-response effects on blood flow and concentrations of tissue metabolites of potent vasoactive substances can be evaluated.

  • 11.
    Henricson, Joakim
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Droog Tesselaar, Erik
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Baiat, Y
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery and Burns.
    Assessment of microvascular response to iontophoresis ofnoradrenaline and phenylephrine using local heating andlaser Doppler flowmetryManuscript (preprint) (Other academic)
    Abstract [en]

    Laser-Doppler flowmetry (LDF) is an attractive method to assess blood flow responses butlacks sensitivity to accurately measure low perfusion values during iontophoresis of vasoconstricting drugs without predilatation of the microvascular bed.

    The aim of this study was to develop a protocol for iontophoresis of noradrenaline (NA) andphenylephrine (Phe) in the skin, using local heating to predilate the microvascular bed andLDF to measure blood flow responses. Three protocols with the same electrical charge (12mC) but different durations and current strengths (100 s x 0.12 mA, 200 s x 0.06 mA, 300 s x0.04 mA) were used to study the effect of pulse duration and current strength on the responses.

    Skin perfusion decreased to 68-78% of the predilatated state with both NA and Phe. Doseresponse plateaus were not obtained with any protocol. The extent of the vasoconstriction depended on the protocol used.

    These results suggest that predilatation by local heating appears less suitable duringiontophoresis of NA and Phe, due to limited vascular responses and especially absence of response plateaus, even at high current strengths. The latter leads to difficulties in performing proper dose response analyses. Another interesting finding was that the actual dose of NA and Phe given to the tissue was affected not only by the size of the electrical charge, but local blood flow as well.

  • 12.
    Henricson, Joakim
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Droog Tesselaar, Erik
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Persson, Karin
    Linköping University, Department of Medicine and Health Sciences, Pharmacology . Linköping University, Faculty of Health Sciences.
    Nilsson, Gert
    Linköping University, Department of Biomedical Engineering, Biomedical Instrumentation. Linköping University, The Institute of Technology.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Assessment of microvascular function by study of the dose‐response effects of iontophoretically applied drugs (acetylcholine and sodium nitroprusside): Methods and comparison with in vitro studies2007In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 73, no 2, p. 143-149Article in journal (Refereed)
    Abstract [en]

    Current knowledge about vascular function stems mainly from pharmacological in vitro studies using mounted vascular strips on a strain gauge. We know of no paper that has systematically examined the possibility of assessing the conventional dose–response effects of iontophoresis and laser Doppler investigation of vasoactive substances and compared those relations to data obtained from strips mounted on a strain gauge.

    We used the vasoactive substances acetylcholine (endothelium dependent) and sodium nitroprusside (endothelium independent) and an antagonist (atropine) to enable further investigations in the receptor physiology of iontophoresis.

    Dose–response curves from the iontophoresis experiments showed close similarity to those obtained by vascular strips mounted on a strain gauge. The coefficient of variation (CV) of the dose–response factors found in iontophoresis (both inter and intra experimental variability) was low. The iontophoretic effective dose of 50% (ED50) for acetylcholine and nitroprusside had only CVs of 25% and 26%, respectively, compared with 71% and 77% for the vascular strips. Acetylcholine-induced response was antagonized by iontophoresis of atropine. Contrary to expectations, this antagonism was not competitive.

    The results show that iontophoresis in combination with laser Doppler technology produces reproducible and reliable dose–response curves that picture the vascular effects of vasoactive drugs.

  • 13.
    Horiuchi, Yoshihito
    et al.
    Linköping University, Department of Medicine and Care. Linköping University, Faculty of Health Sciences.
    Droog Tesselaar, Erik
    Linköping University, Department of Biomedical Engineering. Linköping University, The Institute of Technology.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Wikström, Thore
    Linköping University, Department of Clinical and Experimental Medicine, Disaster Medicine and Traumatology. Linköping University, Faculty of Health Sciences.
    Lennquist, Sten
    Linköping University, Department of Clinical and Experimental Medicine, Surgery . Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Role of histamine release in nonspecific vasodilatation during anodal and cathodal iontophoresis2004In: Microvascular research, ISSN 0026-2862, Vol. 67, no 2, p. 192-196Article in journal (Refereed)
    Abstract [en]

    Nonspecific vasodilatation during iontophoresis is an important confounding factor in experimental pharmacology. In this investigation, we studied the involvement of sensory nerves and histamine-related reactions in causing nonspecific vasodilatation in a model of anodal and cathodal iontophoresis of sodium chloride. Firstly, we applied a mixture of local anesthetic (EMLA) cream to confirm its suppressive effect on nonspecific vasodilatation and to measure its efficacy in three different dosages (duration: 1, 2, and 3 h). We then investigated the role of histamine in nonspecific vasodilatation by giving an oral antihistamine drug (cetirizine) to subjects who had and had not been given EMLA. We found substantial suppression of the nonspecific vasodilatation in all EMLA-treated groups (all dosages) compared with untreated controls (with suppression rates of 60–65%). Dosage had no significant effect. A further suppression of nonspecific vasodilatation was seen after oral cetirizine during anodal and cathodal iontophoresis in both EMLA-treated and untreated groups. The antihistamine effect was most pronounced during anodal iontophoresis. These results suggest a histaminergic increase in perfusion that may be independent of neurogenic mechanisms and depend on polarity (anode or cathode). Local nerve blocks (EMLA) together with cetirizine may therefore be used to reduce nonspecific vasodilatation in both anodal and cathodal iontophoresis.

  • 14.
    Iredahl, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Löfberg, Andreas
    Linköping University, Department of Clinical and Experimental Medicine, Division of Neuro and Inflammation Science. Linköping University, Faculty of Medicine and Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 8, p. 1-15, article id e0133760Article in journal (Refereed)
    Abstract [en]

    Introduction Microvascular changes in the skin due to pharmacological and physiological provocations can be used as a marker for vascular function. While laser Doppler flowmetry (LDF) has been used extensively for measurement of skin microvascular responses, Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi) are novel imaging techniques. TiVi measures red blood cell concentration, while LDF and LSCI measure perfusion. Therefore, the aim of this study was to compare responses to provocations in the skin using these different techniques. Method Changes in skin microcirculation were measured in healthy subjects during (1) iontophoresis of sodium nitroprusside (SNP) and noradrenaline (NA), (2) local heating and (3) post-occlusive reactive hyperemia (PORH) using LDF, LSCI and TiVi. Results Iontophoresis of SNP increased perfusion (LSCI: baseline 40.9 +/- 6.2 PU; 10-min 100 +/- 25 PU; pless than0.001) and RBC concentration (TiVi: baseline 119 +/- 18; 10-min 150 +/- 41 AU; p = 0.011). No change in perfusion (LSCI) was observed after iontophoresis of NA (baseline 38.0 +/- 4.4 PU; 10-min 38.9 +/- 5.0 PU; p = 0.64), while RBC concentration decreased (TiVi: baseline 59.6 +/- 11.8 AU; 10-min 54.4 +/- 13.3 AU; p = 0.021). Local heating increased perfusion (LDF: baseline 8.8 +/- 3.6 PU; max 112 +/- 55 PU; pless than0.001, LSCI: baseline 50.8 +/- 8.0 PU; max 151 +/- 22 PU; pless than0.001) and RBC concentration (TiVi: baseline 49.2 +/- 32.9 AU; max 99.3 +/- 28.3 AU; pless than0.001). After 5 minutes of forearm occlusion with prior exsanguination, a decrease was seen in perfusion (LDF: p = 0.027; LSCI: pless than0.001) and in RBC concentration (p = 0.045). Only LSCI showed a significant decrease in perfusion after 5 minutes of occlusion without prior exsanguination (pless than0.001). Coefficients of variation were lower for LSCI and TiVi compared to LDF for most responses. Conclusion LSCI is more sensitive than TiVi for measuring microvascular changes during SNP-induced vasodilatation and forearm occlusion. TiVi is more sensitive to noradrenaline-induced vasoconstriction. LSCI and TiVi show lower inter-subject variability than LDF. These findings are important to consider when choosing measurement techniques for studying skin microvascular responses.

  • 15.
    Iredahl, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Sadda, Veeranjaneyulu
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Ward, Liam
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Hackethal, Johannes
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. University of Appl Science, Austria.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Modeling Perfusion Dynamics in the Skin During Iontophoresis of Vasoactive Drugs Using Single-Pulse and Multiple-Pulse Protocols2015In: Microcirculation, ISSN 1073-9688, E-ISSN 1549-8719, Vol. 22, no 6, p. 446-453Article in journal (Refereed)
    Abstract [en]

    Objective: After iontophoresis of vasoactive drugs into the skin, a decrease in perfusion is commonly observed. We delivered vasoactive drugs by iontophoresis using different delivery protocols to study how these affect this decrease in perfusion as measured using LDF. Methods: We measured skin perfusion during iontophoresis of (ACh), MCh, andNAusing a single pulse or separate pulses at different skin sites, and during repeated delivery of ACh at the same site. Results: Perfusion half-life was 6.1 (5.6-6.6) minutes for ACh and 41 (29-69) minutes for MCh (p less than 0.001). The maximum response with multiple pulses of ACh iontophoresis was lower than with a single pulse, 30 (22-37) PU vs. 43 (36-50) PU, p less than 0.001. Vasoconstriction to NA was more rapid with a single pulse than with multiple pulses. The perfusion half-life of ACh decreased with repeated delivery of ACh at the same site-first 16 (14-18), second 5.9 (5.1-6-9) and third 3.2 (2.9-3.5) minutes, p less than 0.001. Conclusions: The drug delivery protocol affects microvascular responses to iontophoresis, possibly as a result of differences in the dynamics of local drug concentrations. Perfusion half-life may be used as a measure to quantify the rate of perfusion recovery after iontophoresis of vasoactive drugs.

  • 16.
    Iredahl, Fredrik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences.
    Sarker, Saikat
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Intensive Care in Linköping.
    The Microvascular Response to Transdermal Iontophoresis of Insulin is Mediated by Nitric Oxide2013In: Microcirculation, ISSN 1073-9688, E-ISSN 1549-8719, Vol. 20, no 8, p. 717-723Article in journal (Refereed)
    Abstract [en]

    ObjectiveInsulin has direct effects on blood flow in various tissues, most likely due to endothelial NO production. We investigated whether insulin delivered to the skin by iontophoresis increases microvascular perfusion and whether this effect is partly or completely mediated by the release of NO. MethodsIn healthy subjects, regular insulin and monomeric insulin were delivered to the skin by cathodal iontophoresis. The skin was pretreated either with L-NAME or control solution (PBS) using anodal iontophoresis. Microvascular responses were measured using laser Doppler flowmetry. ResultsA dose-dependent increase in perfusion was observed during iontophoresis of regular and monomeric insulin. The maximum perfusion was significantly elevated compared with control after PBS (regular insulin 53.6 (12.7-95.6) PU vs. 4.2 (3.4-4.8) PU, p = 0.002; monomeric insulin 32.6 (8.9-92.6) PU vs. 5.9 (3.4-56.0) PU, p = 0.03). The microvascular response to insulin was abolished after L-NAME (regular insulin: 25.6 (11.6-54.4) PU vs. control: 4.7 (2.9-11.5) PU, p = 0.15; monomeric insulin 10.9 (5.4-56.8) PU vs. control: 4.7 (2.9-11.5) PU, p = 0.22). ConclusionsThe main finding is that iontophoresis of insulin induces a dose-dependent vasodilation in the skin, which could be suppressed after pretreatment with a NO synthase inhibitor. This suggests that vasodilation in the skin after iontophoresis of insulin is mediated by the NO pathway.

  • 17.
    Li, Yuhong
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences. Shaoxing People's Hospital of Zhejiang University, China.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Borges, J. B.
    Uppsala University, Sweden; University of Sao Paulo, Brazil .
    Böhm, S. H.
    Swisstom AG, Landquart, Switzerland.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Intensive Care in Linköping.
    Janerot-Sjöberg, B.
    Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; KTH, Royal Institute of Technology, Stockholm, Sweden.
    Hyperoxia affects the regional pulmonary ventilation/perfusion ratio: an electrical impedance tomography study2014In: Acta Anaesthesiologica Scandinavica, ISSN 0001-5172, E-ISSN 1399-6576, Vol. 58, no 6, p. 716-725Article in journal (Refereed)
    Abstract [en]

    BACKGROUND:

    The way in which hyperoxia affects pulmonary ventilation and perfusion is not fully understood. We investigated how an increase in oxygen partial pressure in healthy young volunteers affects pulmonary ventilation and perfusion measured by thoracic electrical impedance tomography (EIT).

    METHODS:

    Twelve semi-supine healthy male volunteers aged 21-36 years were studied while breathing room air and air-oxygen mixtures (FiO2) that resulted in predetermined transcutaneous oxygen partial pressures (tcPO2) of 20, 40 and 60 kPa. The magnitude of ventilation (ΔZv) and perfusion (ΔZQ)-related changes in cyclic impedance variations, were determined using an EIT prototype equipped with 32 electrodes around the thorax. Regional changes in ventral and dorsal right lung ventilation (V) and perfusion (Q) were estimated, and V/Q ratios calculated.

    RESULTS:

    There were no significant changes in ΔZv with increasing tcPO2 levels. ΔZQ in the dorsal lung increased with increasing tcPO2 (P = 0.01), whereas no such change was seen in the ventral lung. There was a simultaneous decrease in V/Q ratio in the dorsal region during hyperoxia (P = 0.04). Two subjects did not reach a tcPO2 of 60 kPa despite breathing 100% oxygen.

    CONCLUSION:

    These results indicate that breathing increased concentrations of oxygen induces pulmonary vasodilatation in the dorsal lung even at small increases in FiO2. Ventilation remains unchanged. Local mismatch of ventilation and perfusion occurs in young healthy men, and the change in ventilation/perfusion ratio can be determined non-invasively by EIT.

  • 18.
    Lindahl, Filip
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Anaesthesiology and Surgery.
    Assessing paediatric scald injuries using Laser Speckle Contrast Imaging2013In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 39, no 4, p. 662-666Article in journal (Refereed)
    Abstract [en]

    Background

    The use of objective methods for assessment of burns is limited. Laser Speckle Contrast Imaging (LSCI) is a non-invasive technique for instant measurement of tissue perfusion, making it potentially valuable for early prediction of burn wound outcome.

    Aim

    To evaluate the influence of technical factors on perfusion and to measure perfusion in burns 0–14 days post-burn and compare this with the outcome of the burn wound at 14 days after burn.

    Method

    The effect of room light, camera distance and camera angle was studied using a suspension of polystyrene particles. LSCI measurements were performed on 45 scald burns and 32 uninjured areas 0–14 days after burn.

    Result

    Technical factors had no clinically relevant effect on measured perfusion. Burns that healed within 14 days had a higher perfusion during the first week post-burn than burns that healed after 14 days or underwent surgery. The difference in perfusion was largest 4–7 days after burn.

    Conclusion

    LSCI allows for robust, instant measurement of burns and can easily be applied in a clinical setting. Differences in perfusion during the first week post-burn are related to the outcome after 14 days.

  • 19.
    Mirdell, Robin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Iredahl, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Microvascular blood flow in scalds in children and its relation to duration of wound healing: A study using laser speckle contrast imaging2016In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 42, no 3, p. 648-654Article in journal (Refereed)
    Abstract [en]

    Background: Microvascular perfusion changes in scalds in children during the first weeks after injury is related to the outcome of healing, and measurements of perfusion, based on laser Doppler imaging, have been used successfully to predict the need for excision and grafting. However, the day-to-day changes in perfusion during the first weeks after injury have not to our knowledge been studied in detail. The aim of this study, based on a conservative treatment model where excision and grafting decisions were delayed to day 14 after injury, was to measure changes in perfusion in scalds using laser speckle contrast imaging (LSCI) during the first three weeks after injury. Methods: We measured perfusion with LSCI in 34 patients at regular intervals between 6 h after injury until complete reepithelialization or surgery. Duration of healing was defined as the time to complete reepithelialization. Results: Less perfusion, between 6 and 96 h after injury, was associated with longer duration of healing with the strongest association occurring between 72 and 96 h. Burns that healed within 14 days had relatively high initial perfusion, followed by a peak and subsequent slow decrease. Both the maximum perfusion and the time-to-peak were dependent on the severity of the burn. Burns that needed excision and grafting had less initial perfusion and a gradual reduction over time. Conclusion: The perfusion in scalds in children shows characteristic patterns during the first weeks after injury depending on the duration of wound healing, the greatest difference between wounds of different severity being on the 4th day. Perfusion should therefore preferably be measured on the fourth day if it is to be used in the assessment of burn depth. (c) 2015 Elsevier Ltd and ISBI. All rights reserved.

  • 20.
    Mirdell, Robin
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Lemstra-Idsardi, Aukje Nienke
    University of Twente, Enschede, Netherlands.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Medical radiation physics. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences.
    Data on microcirculatory perfusion dips in the resting nail bed2018In: Data in Brief, E-ISSN 2352-3409, Vol. 21, p. 1232-1235Article in journal (Refereed)
    Abstract [en]

    This article contains the raw data from the article entitled: "The presence of synchronized perfusion dips in the microcirculation of the resting nail bed" Mirdell et al. (in press). A laser speckle contrast imager (LSCI) was used to make a total of 21 recordings of the perfusion in the resting nail bed of 10 healthy test subjects. The first 10 recordings were acquired after 5?min of acclimatization. An additional 10 recordings were acquired in the same test subjects, after 20?min of acclimatization. In the last recording, a digital nerve block was applied to the left dig III. The data show the presence of highly irregular perfusion variations, a phenomenon we like to call perfusion dips. The data also show how the perfusion dips can be abolished through a digital nerve block. An algorithm for the quantification of the perfusion dips is included in the data.

  • 21.
    Rousseau, Andreas
    et al.
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Henricson, Joakim
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Prostaglandins and Radical Oxygen Species Are Involved in Microvascular Effects of Hyperoxia2010In: JOURNAL OF VASCULAR RESEARCH, ISSN 1018-1172, Vol. 47, no 5, p. 441-450Article in journal (Refereed)
    Abstract [en]

    Hyperoxia causes vasoconstriction in most tissues, by mechanisms that are not fully understood. We investigated microvascular effects of breathing 100% oxygen in healthy volunteers, using iontophoresis to deliver acetylcholine (ACh) and sodium nitroprusside (SNP). Aspirin and vitamin C were used to test for involvement of prostaglandins and radical oxygen species. Forearm skin perfusion was measured using laser Doppler perfusion imaging. Results were analysed using dose-response modelling. The response to ACh was reduced by 30% during oxygen breathing compared to air breathing [0.98 (0.81-1.15) PU vs. 1.45 (1.30-1.60) PU, p andlt; 0.001]. ED50 values were unchanged [2.25 (1.84-2.75) vs. 2.21 (1.79-2.74), not significant]. Aspirin pre-treatment abolished the difference in response between oxygen breathing and air breathing [maximum: 1.03 (0.90-1.16) vs. 0.89 (0.77-1.01), not significant; ED50: 1.83 (1.46-2.30) vs. 1.95 (1.65-2.30), not significant]. ACh-mediated vasodilatation during 100% oxygen breathing was partially restored after pre-treatment with vitamin C. Breathing 100% oxygen did not change the microvascular response to SNP [1.45 (1.28-1.62) vs. 1.40 (1.26-1.53), not significant]. These results favour the hypothesis that hyperoxic vasoconstriction is mediated by inhibition of prostaglandin synthesis. Radical oxygen species may be involved as vitamin C, independently of aspirin, partially restored ACh-mediated vasodilatation during hyperoxia.

  • 22.
    Samuelsson, Anders
    et al.
    Linköping University, Department of Medicine and Health Sciences, Anesthesiology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthesiology and Surgical Centre.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Surgery . Linköping University, Faculty of Health Sciences.
    Magnusson, Beatrice
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Dermatology and Venerology in Östergötland.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Unit . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Reconstruction Centre, Department of Plastic Surgery, Hand surgery UHL.
    Implications for critical care of a new in vivo human vascular microdosing technique for giving noradrenaline and nitroglycerine by microdialysisManuscript (preprint) (Other academic)
    Abstract [en]

    Introduction: Skin has a large dynamic capacity for alterations in blood flow, and is therefore often used for recruitment of blood during states of hypoperfusion. Little is known, however, about the metabolic consequences seen in skin secondary to hyporperfusion, particularly when the effects of vasoactive drugs are involved. The aims of this study were: to develop an in vivo, human microdosing model based on microdialysis in skin; and to investigate the effects on blood flow and metabolism of administering noradrenaline and nitroglycerine locally.

    Method: Nine healthy volunteers each had two or three microdialysis catheters placed intradermally in the volar surface of the lower arm. After a stabilisation period, the catheters were perfused with buffers containing noradrenaline 0.5 or 5 μg/ml for 60 minutes, and after a second period of equilibrium of 60 minutes, all catheters were perfused with buffer containing nitroglycerine (0.5mg/ml). Changes in the blood flow in the skin were measured by laser Doppler imaging urea and ethanol clearance. Simultaneous changes in tissue glucose, lactate, and pyruvate concentrations were recorded.

    Results: Perfusing skin with noradrenaline and nitroglycerine induced appreciable changes in all variables studied, depending on time and dose. The changes in glucose and lactate concentrations correlated with the change in blood flow assessed by either laser Doppler imaging or urea clearance. The changes in glucose and lactate that were induced by vasoconstriction (noradrenaline) continued until vasodilatation was induced by nitroglycerine.

    Conclusion: Noradrenaline given by microdialysis in healthy volunteers induced reproducible and dose-dependent hypoperfusion and ischaemia with simultaneous metabolic consequences. Among these, we particularly note that: tissue glucose concentrations responded rapidly to hypoperfusion but remained considerably higher than zero, which suggests an energy-dependent deficiency in cellular uptake; and vasoconstriction remained after cessation of the noradrenaline perfusion, implicating vasospasm and a lack of autoregulatory (recovery) capacity in skin. These findings are particularly interesting from the critical care perspective, where noradrenaline is used extensively for circulatory support. The metabolic consequences may be underestimated and our results suggest that further investigations are warranted.

  • 23.
    Samuelsson, Anders
    et al.
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Intensive Care UHL.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL.
    Magnusson, Beatrice
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Anderson, Chris
    Linköping University, Department of Clinical and Experimental Medicine, Dermatology and Venerology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Heart and Medicine Centre, Department of Dermatology and Venerology in Östergötland.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Zettersten, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Implications for burn shock resuscitation of a new in vivo human vascular microdosing technique (microdialysis) for dermal administration of noradrenaline2012In: Burns, ISSN 0305-4179, E-ISSN 1879-1409, Vol. 38, no 7, p. 975-983Article in journal (Refereed)
    Abstract [en]

    Introduction: Skin has a large dynamic capacity for alterations in blood flow, and is therefore often used for recruitment of blood during states of hypoperfusion such as during burn shock resuscitation. However, little is known about the blood flow and metabolic consequences seen in the dermis secondary to the use vasoactive drugs (i.e. noradrenaline) for circulatory support. The aims of this study were therefore: to develop an in vivo, human microdosing model based on dermal microdialysis; and in this model to investigate effects on blood flow and metabolism by local application of noradrenaline and nitroglycerin by the microdialysis system simulating drug induced circulatory support. less thanbrgreater than less thanbrgreater thanMethod: Nine healthy volunteers had microdialysis catheters placed intradermally in the volar surface of the lower arm. The catheters were perfused with noradrenaline 3 or 30 mmol/L and after an equilibrium period all catheters were perfused with nitroglycerine (2.2 mmol/L). Dermal blood flow was measured by the urea clearance technique and by laser Doppler imaging. Simultaneously changes in dermal glucose, lactate, and pyruvate concentrations were recorded. less thanbrgreater than less thanbrgreater thanResults: Noradrenaline and nitroglycerine delivered to the dermis by the microdialysis probes induced large time- and dose-dependent changes in all variables. We particularly noted that tissue glucose concentrations responded rapidly to hypoperfusion but remained higher than zero. Furthermore, vasoconstriction remained after the noradrenaline administration implicating vasospasm and an attenuated dermal autoregulatory capacity. The changes in glucose and lactate by vasoconstriction (noradrenaline) remained until vasodilatation was actively induced by nitroglycerine. less thanbrgreater than less thanbrgreater thanConclusion: These findings, i.e., compromised dermal blood flow and metabolism are particularly interesting from the burn shock resuscitation perspective where noradrenaline is commonly used for circulatory support. The importance and clinical value of the results obtained in this in vivo dermal model in healthy volunteers needs to be further explored in burn-injured patients.

  • 24.
    Sondergaard, S
    et al.
    Sahlgrens University Hospital.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Samuelsson, Anders
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Intensive Care UHL.
    Fagerberg, A
    Sahlgrens University Hospital.
    Orman, J
    Östergötlands Läns Landsting, Anaesthesiology and Surgical Centre, Department of Intensive Care UHL.
    Viksten, J L
    Östergötlands Läns Landsting, Sinnescentrum, Department of Intensive Care UHL.
    Hallen, K
    Sahlgrens University Hospital.
    Einarsson, H
    Sahlgrens University Hospital.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Aneman, A
    Sahlgrens University Hospital.
    ORIGIN OF IMPEDANCE CHANGES RELATED TO LUNG PERFUSION IN ELECTRICAL IMPEDANCE TOMOGRAPHY in INTENSIVE CARE MEDICINE, vol 36, issue , pp S95-S952010In: INTENSIVE CARE MEDICINE, Springer Science Business Media , 2010, Vol. 36, p. S95-S95Conference paper (Refereed)
    Abstract [en]

    n/a

  • 25.
    Tchou Folkesson, Kim
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Samuelsson, Anders
    Linköping University, Department of Medical and Health Sciences, Anesthesiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Intensive Care UHL.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Dahlström, Bengt
    AB Biopharmacon, Uppsala.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    A Human Vascular Model Based on Microdialysis for the Assessment of the Vasoconstrictive Dose-Response Effects of Norepinephrine and Vasopressin in Skin2012In: Microcirculation, ISSN 1073-9688, E-ISSN 1549-8719, Vol. 19, no 4, p. 352-359Article in journal (Refereed)
    Abstract [en]

    Abstract Objective: Microdialysis enables drug delivery in the skin and simultaneous measurement of their effects. The present study aimed to evaluate dose-dependent changes in blood flow and metabolism during microdialysis of norepinephrine and vasopressin. Methods: We investigated whether increasing concentrations of norepinephrine (NE, 1.859 mu mol/L) and vasopressin (VP, 1100 nmol/L), delivered sequentially in one catheter or simultaneously through four catheters, yield dose-dependent changes in blood flow (as measured using urea clearance) and metabolism (glucose and lactate). Results: We found a significant dose-dependent vasoconstriction with both drugs. Responses were characterized by a sigmoid dose response model. Urea in the dialysate increased from a baseline of 7.9 +/- 1.7 to 10.9 +/- 0.9 mmol/L for the highest concentration of NE (p andlt; 0.001) and from 8.1 +/- 1.4 to 10.0 +/- 1.7 mmol/L for the highest concentration of VP (p = 0.037). Glucose decreased from 2.3 +/- 0.7 to 0.41 +/- 0.18 mmol/L for NE (p = 0.001) and from 2.7 +/- 0.6 to 1.3 +/- 0.5 mmol/L for VP (p andlt; 0.001). Lactate increased from 1.1 +/- 0.4 to 2.6 +/- 0.5 mmol/L for NE (p = 0.005) and from 1.1 +/- 0.4 to 2.6 +/- 0.5 mmol/L for VP (p = 0.008). There were no significant differences between responses from a single catheter and from those obtained simultaneously using multiple catheters. Conclusions: Microdialysis in the skin, either with a single catheter or using multiple catheters, offers a useful tool for studying dose response effects of vasoactive drugs on local blood flow and metabolism without inducing any systemic effects.

  • 26.
    Tesselaar (Droog), Erik
    et al.
    Linköping University, Department of Medicine and Care. Linköping University, Faculty of Health Sciences.
    Henricson, Joakim
    Linköping University, Department of Biomedicine and Surgery. Linköping University, Faculty of Health Sciences.
    Jonsson, Susanne
    Linköping University, Department of Medicine and Care. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Biomedicine and Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    A time–response model for analysis of drug transport and blood flow response during iontophoresis of acetylcholine and sodium nitroprusside2009In: Journal of Vascular Research, ISSN 1018-1172, E-ISSN 1423-0135, Vol. 46, no 4, p. 270-277Article in journal (Refereed)
    Abstract [en]

    Background/Aims: The analysis of blood flow responses to iontophoresis of vasoactive drugs is often limited to evaluation of maximum responses. In this study, a time-response model is proposed for the blood flow responses to vasoactive drugs applied by iontophoresis.

    Methods: The microvascular bed is represented as a single compartment with a zero-order influx of the drugs from the electrode and a first-order clearance due to diffusion and blood flow. The blood flow response to the local drug dose is described using the Emax model.

    Results: The model accurately describes the blood flow responses to acetylcholine and sodium nitroprusside during a single iontophoretic current pulse. There is a significant clearance out of the microvascular bed during iontophoresis which depends on the type of drug administered.

    Conclusion: The model enables an accurate estimation of response parameters such as ED50 and maximum response, even if the true maximum blood flow is not obtained. The results suggest that due to clearance from the microvascular bed, the local drug dose during a single pulse of current is not linearly proportional to current strength multiplied by pulse duration.

  • 27.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Bergkvist, Max
    Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL.
    Polarized Light Spectroscopy for Measurement of the Microvascular Response to Local Heating at Multiple Skin Sites2012In: Microcirculation, ISSN 1073-9688, E-ISSN 1549-8719, Vol. 19, no 8, p. 705-713Article in journal (Refereed)
    Abstract [en]

    Objective: To evaluate whether TiVi, a technique based on polarized light, could measure the change in RBC concentration during local heating in healthy volunteers. Methods: Using a custom-made transparent heater, forearm skin was heated to 42 degrees C for 40 minutes while the change in RBC concentration was measured with TiVi. The perfusion response during local heating was measured at the same time with Laser Doppler flowmetry. Results: Mean RBC concentration increased (91 +/- 34 vs. 51 +/- 34 A.U. at baseline, p less than 0.001). The spatial heterogeneity of the RBC concentration in the measured skin areas was 26 +/- 6.4% at baseline, and 23 +/- 4.6% after 40 minutes of heating. The mean RBC concentrations in two skin sites were highly correlated (0.98 at baseline and 0.96 after 40 minutes of heating). The change in RBC concentration was less than the change in perfusion, measured with LDF. Unlike with LDF, a neurally mediated peak was not observed with TiVi in most of the test subjects. Conclusions: TiVi is a valuable technique for measuring the microvascular response to local heating in the skin, and offers a high reproducibility for simultaneous measurements at different skin sites, provided carefully controlled experiments are ensured.

  • 28.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Dahlström, Nils
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Radiology in Linköping.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS2016In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 169, no 1-4, p. 340-346Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r2 5 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment.

  • 29.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Surgery. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Measurement of red blood cell concentration in skin during vascular provocations using polarization light spectroscopy imaging in JOURNAL OF VASCULAR RESEARCH, vol 48, issue , pp 164-1642011In: JOURNAL OF VASCULAR RESEARCH, Karger , 2011, Vol. 48, p. 164-164Conference paper (Refereed)
    Abstract [en]

    n/a

  • 30.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Nezirevic Dernroth, Dzeneta
    Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Diagnostics, Department of Clinical Chemistry.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Acute effects of coffee on skin blood flow and microvascular function2017In: Microvascular Research, ISSN 0026-2862, E-ISSN 1095-9319, Vol. 114, p. 58-64Article in journal (Refereed)
    Abstract [en]

    Objective

    Studies on the acute effects of coffee on the microcirculation have shown contradicting results. This study aimed to investigate if intake of caffeine-containing coffee changes blood flow and microvascular reactivity in the skin.

    Methods

    We measured acute changes in cutaneous vascular conductance (CVC) in the forearm and the tip of the finger, the microvascular response to transdermaliontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) and post-occlusive reactive hyperemia (PORH) in the skin, after intake of caffeinated or decaffeinated coffee.

    Results

    Vasodilatation during iontophoresis of ACh was significantly stronger after intake of caffeinated coffee compared to after intake of decaffeinated coffee (1.26 ± 0.20 PU/mm Hg vs. 1.13 ± 0.38 PU/mm Hg, P < 0.001). Forearm CVC before and after PORH were not affected by caffeinated and decaffeinated coffee. After intake of caffeinated coffee, a more pronounced decrease in CVC in the fingertip was observed compared to after intake of decaffeinated coffee (− 1.36 PU/mm Hg vs. − 0.52 PU/mm Hg, P = 0.002).

    Conclusions

    Caffeine, as ingested by drinking caffeinated coffee acutely improves endothelium-dependent microvascular responses in the forearm skin, while endothelium-independent responses to PORH and SNP iontophoresis are not affected. Blood flow in the fingertip decreases markedly during the first hour after drinking caffeinated coffee compared to decaffeinated coffee.

  • 31.
    Tesselaar, Erik
    et al.
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Sandborg, Michael
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    ASSESSING THE USEFULNESS OF THE QUASI-IDEAL OBSERVER FORQUALITY CONTROL IN FLUOROSCOPY2016In: Radiation Protection Dosimetry, ISSN 0144-8420, E-ISSN 1742-3406, Vol. 169, no 1-4, p. 360-364Article in journal (Refereed)
    Abstract [en]

    The aim of this work was to evaluate the reliability of the square of the signal-to-noise ratio rate, SNR2rate, as a precise measurement for quality control test in a digital fluoroscopy system. The quasi-ideal model observer was used to measure SNR2rate. The dose rate, pulse rate and field of view were varied, and their effect on dose efficiency, defined as SNR2rate=PKA;rate, was evaluated (where PKA;rate is the air kerma-area product rate). Measurements were repeated to assess reproducibility. The relative standard deviation in SNR2rate=PKA;rate over seven consecutive measurements was 5 %. No significant variation in SNR2rate=PKA;rate was observed across different pulse rates (10–30 pulses s-1). The low-dose-rate setting had a superior dose efficiency compared with the medium- and high-dose-rate settings. A smaller field of view resulted in higher dose efficiency. The results show that SNR2rate=PKA;rate measurements offer the high precision required in quality control constancy tests.

  • 32.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Sarker, Saikat
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Assessment of the microvascular effect of insulin using transdermal iontophoresis: optimizing drug delivery in JOURNAL OF VASCULAR RESEARCH, vol 48, Suppl. 1, Poster Session II/2, pp 127-1272011In: JOURNAL OF VASCULAR RESEARCH / [ed] Ulrich Pohl and Markus Sperandio, Karger , 2011, Vol. 48, p. 127-127Conference paper (Refereed)
    Abstract [en]

    Transdermal delivery by iontophoresis has been used previously to study the vascular effects of insulin in the cutaneous microcirculation. Although a vasodilatory effect of iontophoretically applied insulin has been shown, the observed increases in perfusion, as measured using laser Doppler flowmetry, are modest, possibly since delivered doses are limited due to the electrochemical properties of the molecule, and the relatively low permeability of the skin.

    Ethanol, urea and depilatory agents have previously been used to enhance transport of substances during iontophoresis. In this pilot study in 8 healthy volunteers, we aimed to investigate the effect of insulin on skin perfusion, as measured by laser-Doppler flowmetry. We tested various strategies that could possibly enhance the delivery of insulin to the skin using iontophoresis, including the use of an insulin analog (insulin aspart), pretreatment of the skin with ethanol and depilatory cream and using 50%/50% mixtures of insulin/ethanol and insulin/urea.

    Although a slight increase in skin perfusion was found in most subjects with iontophoresis of regular insulin using a single 10-minute current pulse of 0.02 mA (12 mC, N=4), this effect was not significant. Neither of the two pretreatment methods affected this effect. However, when using 9 x 20sec current pulses of 0.2 mA (36 mC, N=4), and when the drugs were mixed with ethanol in a 50%/50% fraction , a 15- to 17-fold increase in perfusion was found for insulin aspart (p=0.04). Iontophoresis of a control substance (50%/50% ethanol/sodium chloride) did not have any effect on skin perfusion (p=0.32). Similarly, iontophoresis of a mixture of urea and insulin aspart yielded a 14-fold increase in perfusion (p=0.03), while a non significant increase in perfusion was found when urea was mixed with regular insulin (p=0.08) and no change at all with sodium chloride (control, p=0.27).

    These results indicate that iontophoretic transport of insulin may be enhanced by using mixtures of insulin with ethanol or urea, which may facilitate studies that use iontophoresis to study the vascular effects of insulin in the cutaneous microcirculation. Further studies, for instance using microdialysis, are required to directly measure the delivered dose of insulin during iontophoresis under different conditions.

  • 33.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Health Sciences.
    Schiffer, Angelique
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Widdershoven, Jos
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Broers, Herman
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Hendriks, Eric
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Luijten, Kees
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Creusen, John
    TweeSteden Ziekenhuis, Tilburg, the Netherlands.
    Effect of Cardiac Resynchronization Therapy on Endothelium-Dependent Vasodilatation in the Cutaneous Microvasculature2012In: Pacing and Clinical Electrophysiology, ISSN 0147-8389, E-ISSN 1540-8159, Vol. 35, no 4, p. 377-384Article in journal (Refereed)
    Abstract [en]

    Aims: Cardiac resynchronization therapy (CRT) improves hemodynamic parameters, exercise capacity, symptoms, functional status, and prognosis among patients with chronic heart failure (CHF). The role of the vascular endothelium in these improvements is largely unknown. In this study, we aimed to investigate whether the endothelium-dependent reactivity of the peripheral microcirculation improves in CHF patients during the first 2 months of CRT. less thanbrgreater than less thanbrgreater thanMethods: We used local heating and iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to measure endothelial function and smooth muscle function in the cutaneous microvasculature of 11 CHF patients before and 2 months after CRT. less thanbrgreater than less thanbrgreater thanResults: We found that the perfusion response in the skin to local heating was increased 2 months postCRT compared with baseline, both in terms of maximum perfusion (baseline: 113 [90-137] vs 2-months post-CRT: 137 [98-175], P = 0.037) and area under curve (baseline: 1,601 [935-2,268] vs 2-months CRT: 2,205 [1,654-2,757], P = 0.047). Also, the perfusion response to iontophoresis of ACh was improved (Emax: 23.9 [20.6-26.2] vs at 2-months CRT: 31.2 [29.3-33.4], P = 0.005). No difference was found between the responses to SNP before and after CRT. less thanbrgreater than less thanbrgreater thanConclusion: These results show that CRT improves endothelium-dependent vasodilatory capacity in the peripheral microcirculation within 2 months of therapy. The improvement in functional capacity that is seen in patients treated with CRT may, therefore, be in part mediated by an improvement of endothelium-dependent vasodilatory capacity.

  • 34.
    Tesselaar, Erik
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences.
    Sjöberg, Folke
    Linköping University, Department of Clinical and Experimental Medicine, Burn Center. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Sinnescentrum, Department of Plastic Surgery, Hand surgery UHL. Östergötlands Läns Landsting, Sinnescentrum, Department of Anaesthesiology and Surgery UHL.
    Transdermal iontophoresis as an in-vivo technique for studying microvascular physiology2011In: MICROVASCULAR RESEARCH, ISSN 0026-2862, Vol. 81, no 1, p. 88-96Article in journal (Refereed)
    Abstract [en]

    Assessment of microvascular function is of major importance in understanding the physiology of the vasculature and in investigating the vascular effects of pathological conditions. Transdermal iontophoresis can be used to non-invasively introduce vasoactive drugs into the skin. The response of the local cutaneous microvasculature to these drugs can be measured by methods such as laser Doppler flowmetry. Although the technique has been used for over two decades, there are still important methodological issues to be resolved. This review describes the technique of iontophoresis as well as its development during recent years, while focusing on how iontophoresis can be used as an in-vivo model for studying physiologic mechanisms and on the analysis and interpretation of dose-response data.

  • 35.
    Zötterman, Johan
    et al.
    Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences.
    Bergkvist, Max
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Iredahl, Fredrik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery. Linköping University, Faculty of Medicine and Health Sciences.
    Monitoring of partial and full venous outflow obstruction in a porcine flap model using laser speckle contrast imaging2016In: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1532-1959, Vol. 69, no 7, p. 936-943Article in journal (Refereed)
    Abstract [en]

    Background: In microsurgery, there is a demand for more reliable methods of postoperative monitoring of free flaps, especially with regard to tissue-threatening obstructions of the feeding arteries and draining veins. In this study, we evaluated laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) to assess their possibilities to detect partial and full venous outflow obstruction, as well as full arterial occlusion, in a porcine flap model. Methods: Cranial gluteal artery perforator flaps (CGAPs) were raised, and arterial and venous blood flow to and from the flaps was monitored using ultrasonic flow probes. The venous flow was altered with an inflatable cuff to simulate partial and full (50% and 100%) venous obstruction, and arterial flow was completely obstructed using clamps. The flap microcirculation was monitored using LSCI and LDF. Results: Both LDF and the LSCI detected significant changes in flap perfusion. After partial (50%) venous occlusion, perfusion decreased from baseline, LSCI: 63.5 +/- 12.9 PU (p = 0.01), LDF 31.3 +/- 15.7 (p = 0.64). After 100% venous occlusion, a further decrease in perfusion was observed: LSCI 54.6 +/- 14.2 PU (p amp;lt; 0.001) and LDF 16.7 +/- 12.8 PU (p amp;lt; 0.001). After release of the venous cuff, LSCI detected a return of the perfusion to a level slightly, but not significantly, below the baseline level 70.1 +/- 11.5 PU (p=0.39), while the LDF signal returned to a level not significant from the baseline 36.1 +/- 17.9 PU (p amp;gt; 0.99). Perfusion during 100% arterial occlusion decreased significantly as measured with both methods, LSCI: 48.3 +/- 7.7 (PU, pamp;lt;0.001) and LDF: 8.5 +/- 4.0 PU (pamp;lt;0.001). During 50% and 100% venous occlusion, LSCI showed a 20% and 26% inter-subject variability (CV%), respectively, compared to 50% and 77% for LDF. Conclusions: LSCI offers sensitive and reproducible measurements of flap microcirculation and seems more reliable in detecting decreases in blood perfusion caused by venous obstruction. It also allows for perfusion measurements in a relatively large area of flap tissue. This may be useful in identifying areas of the flap with compromised microcirculation during and after surgery. (C) 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  • 36.
    Zötterman, Johan
    et al.
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Mirdell, Robin
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Horsten, Sandra
    Linköping University, Department of Clinical and Experimental Medicine. Linköping University, Faculty of Medicine and Health Sciences.
    Farnebo, Simon
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Anaesthetics, Operations and Specialty Surgery Center, Department of Hand and Plastic Surgery.
    Tesselaar, Erik
    Linköping University, Department of Clinical and Experimental Medicine, Division of Surgery, Orthopedics and Oncology. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Center for Surgery, Orthopaedics and Cancer Treatment, Department of Radiation Physics.
    Methodological concerns with laser speckle contrast imaging in clinical evaluation of microcirculation2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 3, article id e0174703Article in journal (Refereed)
    Abstract [en]

    Background Laser Speckle Contrast Imaging (LSCI) is a non-invasive and fast technique for measuring microvascular blood flow that recently has found clinical use for burn assessment and evaluation of flaps. Tissue motion caused by for example breathing or patient movements may however affect the measurements in these clinical applications, as may distance between the camera and the skin and tissue curvature. Therefore, the aims of this study were to investigate the effect of frame rate, number of frames/image, movement of the tissue, measuring distance and tissue curvature on the measured perfusion. Methods Methyl nicotinate-induced vasodilation in the forearm skin was measured using LSCI during controlled motion at different speeds, using different combinations of frame rate and number of frames/image, and at varying camera angles and distances. Experiments were made on healthy volunteers and on a cloth soaked in a colloidal suspension of polystyrene microspheres. Results Measured perfusion increased with tissue motion speed. The relation was independent of the absolute perfusion in the skin and of frame rate and number of frames/image. The measured perfusion decreased with increasing angles (16% at 60, p = 0.01). Measured perfusion did not vary significantly between measurement distances from 15 to 40 cm (p = 0.77, %CV 0.9%). Conclusion Tissue motion increases and measurement angles beyond 45 decrease the measured perfusion in LSCI. These findings have to be taken into account when LSCI is used to assess moving or curved tissue surfaces, which is common in clinical applications.

1 - 36 of 36
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf