Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    A metacognitive perspective on reading mathe-matical texts: Students’ beliefs and criteria for comprehension2006Manuscript (preprint) (Other academic)
  • 2.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    A reading comprehension perspective on problem solving2006In: Developing and researching quality in mathematics teaching and learning : proceedings of MADIF 5 : the 5th Swedish Mathematics Education Research Seminar, Malmö, January 24-25, 2006 / [ed] Christer Bergsten and Barbro Grevholm, Linköping: Svensk förening för matematikdidaktisk forskning (SMDF) , 2006, p. 136-145Conference paper (Refereed)
    Abstract [en]

    The purpose of this paper is to discuss the bi-directional relationship between reading comprehension and problem solving, i.e. how reading comprehension can affect and become an integral part of problem solving, and how it can be affected by the mathematical text content or by the mathematical situation when the text is read. Based on theories of reading comprehension and a literature review it is found that the relationship under study is complex and that the reading process can affect as well as act as an integral part of the problem solving process but also that not much research has focused on this relationship.

  • 3.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Characterizing reading comprehension of mathematical texts2006In: Educational Studies in Mathematics, ISSN 0013-1954, E-ISSN 1573-0816, Vol. 63, no 3, p. 325-346Article in journal (Refereed)
    Abstract [en]

    This study compares reading comprehension of three different texts: two mathematical texts and one historical text. The two mathematical texts both present basic concepts of group theory, but one does it using mathematical symbols and the other only uses natural language. A total of 95 upper secondary and university students read one of the mathematical texts and the historical text. Before reading the texts, a test of prior knowledge for both mathematics and history was given and after reading each text, a test of reading comprehension was given. The results reveal a similarity in reading comprehension between the mathematical text without symbols and the historical text, and also a difference in reading comprehension between the two mathematical texts. This result suggests that mathematics in itself is not the most dominant aspect affecting the reading comprehension process, but the use of symbols in the text is a more relevant factor. Although the university students had studied more mathematics courses than the upper secondary students, there was only a small and insignificant difference between these groups regarding reading comprehension of the mathematical text with symbols. This finding suggests that there is a need for more explicit teaching of reading comprehension for texts including symbols.

  • 4.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Epistemological beliefs and communication in mathematics education at upper secondary and university levels2009In: Perspectives on mathematical knowledge. Proceedings of MADIF 6, the 6th Swedish Mathematics Education Research Seminar, Stockholm, January 29-30, 2008 / [ed] Christer Bergsten, Barbro Grevholm, Thomas Lingefjärd, Linköping: Svensk förening för matematikdidaktisk forskning (SMDF) , 2009, p. 132-134Conference paper (Other academic)
  • 5.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Kognitiva och metakognitiva perspektiv på läsförståelse inom matematik2006Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There seems to exist a general belief that one needs to learn specifically how to read mathematical texts, that is, a need to develop a special kind of reading ability for such texts. However, this belief does not seem to be based on research results since it does not exist much research that focus on reading comprehension in mathematics.

    The main purpose of this dissertation is to examine whether a reader needs special types of knowledge or abilities in order to read mathematical texts. Focus is on students’ reading of different kinds of texts that contain mathematics from introductory university level. The reading of mathematical texts is studied from two different perspectives, on the one hand a cognitive perspective, where reading abilities and content knowledge are studied in relation to reading comprehension, and on the other a metacognitive perspective, where focus is on beliefs and how a reader determines whether a text has been understood or not.

    Three empirical studies together with theoretical discussions, partly based on two literature surveys, are included in this dissertation. The literature surveys deal with properties of mathematical texts and reading in relation to problem solving. The empirical studies compare the reading of different types of texts, partly mathematical texts with texts with content from another domain and partly different types of mathematical texts, where focus is on the use of symbols and texts focusing on conceptual or procedural knowledge. Furthermore, students’ beliefs about their own reading comprehension and about texts and reading in general in mathematics are studied, in particular whether these beliefs are connected to reading comprehension.

    The results from the studies in this dissertation show that the students seem to use a special type of reading ability for mathematical texts; to focus on symbols in a text. For mathematical texts without symbols, a more general reading ability is used, that is, a type of ability also used for texts with content from another domain. The special type of reading ability used for texts including symbols affects the reading comprehension differently depending on whether the text focuses on conceptual or procedural knowledge. Compared to the use of the more general reading ability, the use of the special reading ability creates a worse reading comprehension.

    There seems to exist a need to focus on reading and reading comprehension in mathematics education since results in this dissertation show that courses at the upper secondary level (course E) and at the university level (in algebra and analysis) do not affect the special reading ability. However, the mentioned results show that this focus on reading does not necessarily need to be about learning to read mathematical texts in a special manner but to use an existing, more general, reading ability also for mathematical texts.

    Results from the metacognitive perspective show a difference between conscious aspects, such as regarding beliefs and reflections about comprehension, and unconscious aspects, such as the more automatic processes that make a reader understand a text, where also metacognitive processes are active. In particular, beliefs, which have been examined through a questionnaire, do not have a clear and independent effect on reading comprehension.

    From the texts used in these studies and the participating students, there seems not do be a general need to view the reading of mathematical texts as a special kind of process that demands special types of reading abilities. Instead, the development of a special type of reading ability among students could be caused by a lack of experiences regarding a need to read different types of mathematical texts where similarities with reading in general can be highlighted and used.

  • 6.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Learning mathematics by reading - a study of students interacting with a text2003Report (Other academic)
    Abstract [en]

    This study investigates the situation when students on their own read a new mathematical text, and solve problems relevant to the text. The students worked together in pairs on a given text, about the absolute value of real numbers, with a video camera recording their activity. First, the students were instructed to read and discuss the text without any given tasks. Thereafter, the students were given exercises relevant to the text, and they were allowed to keep the text and use it when working with these exercises. Two pairs of students participated, all of them on their last year on the natural science programme at the Swedish upper secondary school. The observations reveal a variety of different activities among the students, and some questions also arise that would be interesting to examine in more detail.

  • 7.
    Österholm, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
    Learning mathematics by reading - a study of students interacting with a text2003In: Nordic pre-conference to ICME 10, 2003Conference paper (Other academic)
  • 8.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Läsa matematiska texter: Förståelse och lärande i läsprocessen2004Licentiate thesis, monograph (Other academic)
    Abstract [sv]

    Denna avhandling behandlar läsning av matematiska texter; hur och vad man förstår och lär sig vid läsningen. Fokus ligger på läsprocessen, det vill säga själva läsandet av texten och vad man förstår efter att läst igenom texten. Huvudsyftet är att studera specifika aspekter i läsandet av just matematiska texter för att testa och utveckla en befintlig, allmän teori kring läsprocessen. Speciellt studeras användningen av symboler i matematiska texter och hur detta kan påverka läsprocessen. Avhandlingen byggs upp av teoretiska diskussioner kring läsning av matematiska texter samt en empirisk studie bland gymnasieelever och universitetsstuderande.

    De teoretiska diskussionerna utgår bland annat från en litteraturstudie kring förekommande påståenden om speciella egenskaper hos matematiska texter, och speciellt diskuteras läsning av symboler och algebraiska uttryck.

    Den empiriska studien (med 106 deltagare) använde tre olika texter; en historietext om ryska revolutionen samt två matematiktexter om gruppteori. Matematiktexterna behandlar samma sak som gruppteori, men skillnaden mellan dem är att den ena använder matematiska symboler i sin presentation medan den andra inte alls använder symboler. Varje deltagare fick läsa en utav matematiktexterna samt historietexterna, och fick efter varje text besvara frågor om textens innehåll.

    Den grupp av personer som läste matematiktexten utan symboler har bättre resultat på frågor om texten än den grupp som läste texten med symboler. Detta verkar kunna bero på oförmåga att artikulera symboler vid läsning av texten samt att avkodningsförmågan inte verkar kunna utnyttjas på samma sätt för texten med symboler. Läsning av matematiska texter med symboler är alltså ganska speciellt och man kan behöva lära sig hur man läser sådana texter. Däremot verkar det finnas många likheter med läsning av matematiska texter utan symboler och historietexten. Det matematiska innehållet verkar alltså inte i någon större omfattning påverka läsprocessen, utan hur detta innehåll presenteras är en viktig aspekt.

    I de teoretiska diskussionerna ges förslag på hur läsning av matematiska symboler kan infogas i den allmänna teorin för läsprocessen. Överlag finns dock ingen anledning att se läsning av matematiska texter som någon speciell typ av process som skiljer sig från läsning av andra texter. Den allmänna teorin för läsprocessen kan därmed fungera som teoretisk grund även för läsförståelse av matematiska texter, möjligen med föreslaget tillägg om matematiska symboler.

  • 9.
    Österholm, Magnus
    Linköping University, Department of Mathematics, Applied Mathematics. Linköping University, The Institute of Technology.
    Metacognition and reading - criteria for comprehension of mathematics texts2006In: Proceedings of the 30th conference of the International group for the psychology of mathematics education / [ed] J. Novotná, H. Moraová, M. Krátká and N. Stehlíková, Prague: The International Group for the Psychology of Mathematics Education , 2006, Vol. 4, p. 289-296Conference paper (Other academic)
    Abstract [en]

    This study uses categories of comprehension criteria to examine students’ reasons for stating that they do, or do not, understand a given mathematics text. Nine student teachers were individually interviewed, where they read a text and commented on their comprehension, in particular, why they felt they did, or did not, understand the text. The students had some difficulties commenting on their comprehension in this manner, something that can be due to that much of comprehension monitoring, when criteria for comprehension are used, might be operating at an unconscious cognitive level. Some specific aspects of mathematics texts are examined, such as the symbolic language and conceptual and procedural understanding.

  • 10.
    Österholm, Magnus
    Linköping University, The Institute of Technology. Linköping University, Department of Mathematics, Applied Mathematics.
    Reading mathematical texts: cognitive processes and mental representations2004Conference paper (Refereed)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf