Change search
Refine search result
1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahrén, Maria
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Olsson, Petter
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Rare earth nanoparticles as contrast agent in MRI: Nanomaterial design and biofunctionalization2007In: IVC-17/ICSS-13 ICNT,2007, 2007Conference paper (Other academic)
  • 2.
    Ahrén, Maria
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Selegård, Linnéa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Skoglund, Caroline
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Bengtsson, Torbjörn
    Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, The Institute of Technology.
    Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement2010In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 26, no 8, p. 5753-5762Article in journal (Refereed)
    Abstract [en]

    Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3−5 nm) gadolinium oxide (DEG-Gd2O3) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd2O3 nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd2O3 nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r1 and r2 values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd2O3. Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.

  • 3.
    Engström, Maria
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Klasson, Anna
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Pedersen, Henrik
    Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, The Institute of Technology.
    Vahlberg, Cecillia
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    High Proton Relaxivity for Gadolinium Oxide Nanoparticles2006In: Magnetic Resonance Materials in Physics, Biology and Medicine, ISSN 0968-5243, E-ISSN 1352-8661, Vol. 19, no 4, p. 180-186Article in journal (Refereed)
    Abstract [en]

    Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

    Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

    Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T 1 and T 2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

    Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T 1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

  • 4.
    Fortin, Marc-André
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Petoral Jr, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Veres, Teodor
    National Research Council of Canada (CNRC-IMI) 75, Boucherville, QC, Canada.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Polyethylene glycol-cover ultra-small Gd2O3 nanoparticles for positive contras at 1.5 T magnetic resonance clinical scanning2007In: Nanotechnology, ISSN 0957-4484, Vol. 18, no 39, p. 395501-Article in journal (Refereed)
    Abstract [en]

    The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) and signal intensity with this contrast agent was investigated. Size distribution and magnetic properties of US-Gd2O3 nanocrystals were measured with a TEM and PPMS magnetometer. For relaxation studies, diethylene glycol (DEG)-capped US-Gd2O3 nanocrystals were reacted with PEG-silane (MW 5000). Suspensions were adequately dialyzed in water to eliminate traces of Gd3+ and surfactants. The particle hydrodynamic radius was measured with dynamic light scattering (DLS) and the proton relaxation times were measured with a 1.5 T MRI scanner. Parallel studies were performed with DEG–Gd2O3 and PEG-silane–SPGO (Gd2O3,< 40 nm diameter). The small and narrow size distribution of US-Gd2O3 was confirmed with TEM (~3 nm) and DLS. PEG-silane–US-Gd2O3 relaxation parameters were twice as high as for Gd–DTPA and the r2/r1 ratio was 1.4. PEG-silane–SPGO gave low r1 relaxivities and high r2/r1 ratios, less compatible with positive contrast agent requirements. Higher r1 were obtained with PEG-silane in comparison to DEG–Gd2O3. Treatment of DEG–US-Gd2O3 with PEG-silane provides enhanced relaxivity while preventing aggregation of the oxide cores. This study confirms that PEG-covered Gd2O3 nanoparticles can be used for positively contrasted MR applications requiring stability, biocompatible coatings and nanocrystal functionalization.

  • 5.
    Hedlund, Anna
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    MRI Contrast Enhancement and Cell Labeling using Gd2O3 Nanoparticles2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is an increasing interest for nanomaterials in bio-medical applications and in this work, nanoparticles of gadolinium oxide (Gd2O3 ) have been investigated as a novel contrast agent for magnetic resonance imaging (MRI). Relaxation properties have been studied in aqueous solutions as well as in cell culture medium and the nanoparticles have been explored as cell labeling agents. The fluorescent properties of the particles were used to visualize the internalization in cells and doped particles were investigated as a multimodal agent that could work as a fluorescent marker for microscopy and as a contrast enhancer for MRI. Fluorescent studies show that the Gd2O3 nanoparticles doped with 5% terbium have interesting fluorescent properties and that these particles could work as such multimodal contrast agent. Relaxivity measurements show that in aqueous solutions, there is a twofold increase in relaxivity for Gd2O3 compared to commercial agent Gd-DTPA. In cell culture medium as well as in cells, there is a clear T1 effect and an increase in signal intensity in T1-mapped images. The cellular uptake of Gd2O3 nanoparticles were increased with the use of transfection agent protamine sulfate. This work shows that Gd2O3 nanoparticles possess good relaxation properties that are retained in different biological environments. Gd2O3 particles are suitable as a T1 contrast agent, but seem also be adequate for T2 enhancement in forinstance cell labeling experiments.

  • 6.
    Hedlund, Anna
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Faculty of Health Sciences.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry . Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, The Institute of Technology.
    Gustafsson, Håkan
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Abrikossova, Natalia
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Warntjes, Marcel
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences.
    Jönsson, Jan-Ingvar
    Linköping University, Department of Clinical and Experimental Medicine, Experimental Hematology. Linköping University, Faculty of Health Sciences.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics . Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences.
    Detection of Gd2O3 Nanoparticles in Hematopoietic Cells for MRI Contrast EnhancementManuscript (preprint) (Other academic)
    Abstract [en]

    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and there has been a huge development in the fields of molecular imaging and intracellular markers.

    Previous studies have shown that gadolinium oxide (Gd2O3 ) nanoparticles generate higher relaxivity than currently available Gd chelates. The Gd2O3 nanoparticles are also promising for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles and to improve techniques for monitoring hematopoietic stem cell migration by MRI.

    We studied particle uptake in two cell lines; the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles as well as superparamagnetic iron oxide particles (SPIOs) for comparison. In addition, it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by microscopic techniques, MRI and analyzed for particle content.

    Results showed that particles were intracellular, however in Ba/F3 only sparsely. The relaxation times were shortened with increasing particle concentration. Overall relaxivities, r1 and r2 for Gd2O3 nanoparticles in all cell samples measured were 5.1 ± 0.3 and 14.9 ± 0.7 (s-1mM-1) respectively. Goodness of fit was 0.97 in both cases. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells.

    Viability of treated cells was not significantly decreased and thus, we conclude that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells.

  • 7.
    Hedlund, Anna
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Gustafsson, Håkan
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medical and Health Sciences, Radiation Physics. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Warntjes, Marcel
    Linköping University, Department of Medical and Health Sciences, Clinical Physiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Jönsson, Jan-Ivar
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Medical and Physiological Chemistry.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Faculty of Health Sciences.
    Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement2011In: International journal of nano medicine, ISSN 1178-2013, Vol. 6, p. 3233-3240Article in journal (Refereed)
    Abstract [en]

    As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3) nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s-1 mM-1 and 9.6–17.2 s-1 mM-1, respectively. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells. However, the increased uptake did not increase the relaxation rate for THP-1 as for Ba/F3, probably due to aggregation and/or saturation effects. Viability of treated cells was not significantly decreased and thus, it was concluded that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells. In conclusion, Gd2O3 nanoparticles are a promising material to achieve positive intracellular MRI contrast; however, further particle development needs to be performed.

  • 8.
    Klasson, Anna
    Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Faculty of Health Sciences.
    MRI Contrast Enhancement using Gd2O3 Nanoparticles2008Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    There is an increasing interest for nanomaterials in biomedical applications and in this work, nanoparticles of gadolinium oxide (Gd2O3) have been investigated as a novel contrast agent for Magnetic Resonance Imaging (MRI). Relaxation properties have been studied in aqueous solutions as well as in cell culture medium and the nanoparticles have been explored as cell labeling agents. The fluorescent properties of the particles were used to visualize the internalization in cells and doped particles were also investigated as a multimodal agent that could work as a fluorescent marker for microscopy and as a contrast enhancer for MRI.

    Results show that in aqueous solutions, there is a twofold increase in relaxivity for Gd2O3 compared to commercial agent Gd-DTPA. In cell culture medium as well as in cells, there is a clear T1 effect and a distinct increase in signal intensity in T1-mapped images. Fluorescent studies show that the Gd2O3 nanoparticles doped with 5% terbium have interesting fluorescent properties and that these particles could work as a multimodal contrast agent.

    This study shows that Gd2O3 nanoparticles possess excellent relaxation properties that are retained in more biological environments. Gd2O3 particles are suitable as a T1 contrast agent, but seem also be adequate for T2 enhancement in for instance cell labeling experiments.

  • 9.
    Klasson, Anna
    et al.
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Ahrén, Maria
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Hellqvist, Eva
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Rosén, Anders
    Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, The Institute of Technology. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles2008In: Contrast Media and Molecular Imaging, ISSN 1555-4309, Vol. 3, no 3, p. 106-111Article in journal (Refereed)
    Abstract [en]

    There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s-1 mm-1 for cell culture medium. The r2 was 17.4 and 12.9 s-1 mm-1, respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (pr1 = 0.36), but r2 was significantly different for the two different series (pr2 = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.

  • 10.
    Klasson, Anna
    et al.
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Hellqvist, Eva
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Rosén, Anders
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Biomedicine and Surgery, Division of cell biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Uvdal, Kajsa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Care, Medical Radiology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Cell tracking with positive contrast using Gd2O3 nanoparticles2006In: ESMRMB,2006, 2006Conference paper (Other academic)
  • 11.
    Petoral, Rodrigo M
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Söderlind, Fredrik
    Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
    Klasson, Anna
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Suska, Anke
    Linköping University, Department of Physics, Chemistry and Biology, Applied Physics. Linköping University, Faculty of Science & Engineering.
    Fortin, Marc-André
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Abrikossova, Natalia
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Selegard, Linnea
    Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics. Linköping University, The Institute of Technology.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, The Institute of Technology.
    Engström, Maria
    Linköping University, Center for Medical Image Science and Visualization (CMIV). Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medical Imaging, Department of Radiology in Linköping.
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Synthesis and Characterization of Tb3+-Doped Gd2O3 Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 17, p. 6913-6920Article in journal (Refereed)
    Abstract [en]

    Ultrasmall gadolinium oxide nanoparticles doped with terbium ions were synthesized by the polyol route and characterized as a potentially bifunctional material with both fluorescent and magnetic contrast agent properties. The structural, optical, and magnetic properties of the organic-acid-capped and PEGylated Gd2O3:Tb3+ nanocrystals were studied by HR-TEM, XPS, EDX, IR, PL, and SQUID. The luminescent/fluorescent property of the particles is attributable to the Tb3+ ion located on the crystal lattice of the Gd2O3 host. The paramagnetic behavior of the particles is discussed. Pilot studies investigating the capability of the nanoparticles for fluorescent labeling of living cells and as a MRI contrast agent were also performed. Cells of two cell lines (THP-1 cells and fibroblasts) were incubated with the particles, and intracellular particle distribution was visualized by confocal microscopy. The MRI relaxivity of the PEGylated nanoparticles in water at low Gd concentration was assessed showing a higher T-1 relaxation rate compared to conventional Gd-DTPA chelates and comparable to that of undoped Gd2O3 nanoparticles.

  • 12.
    Söderlind, Fredrik
    et al.
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Fortin, Marc A.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Petoral, Rodrigo M.
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Klasson, Anna
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Veres, Teodor
    National Research Council of Canada .
    Engström, Maria
    Linköping University, Department of Medical and Health Sciences, Radiology. Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
    Uvdal, Kajsa
    Linköping University, Department of Physics, Chemistry and Biology, Molecular Surface Physics and Nano Science. Linköping University, Faculty of Science & Engineering.
    Käll, Per-Olov
    Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry. Linköping University, Faculty of Science & Engineering.
    Colloidal synthesis and characterization of ultrasmall perovskite GdFeO3 nanocrystals2008In: Nanotechnology, ISSN 0957-4484, Vol. 19, no 8, p. 085608-Article in journal (Refereed)
    Abstract [en]

    Synthesis of very small (about 4 nm) perovskite structured gadolinium orthoferrite nanoparticles (GdFeO3) was performed by the polyol method. The material shows promising relaxivity properties and potential as a contrast agent in magnetic resonance imaging. The perovskite nanoparticles were characterized by x-ray diffraction, transmission electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, magnetic resonance, and magnetization measurements. Upon heating in air at 800 °C for 3 h the size of the crystals increased to about 40 nm. The crystalline structure of the heat treated compound is in good agreement with perovskite GdFeO3 as the primary product. Contributions from various secondary phases were also identified, including one hitherto unknown phase with the suggested composition 'Gd3FeO6' and isostructural with Gd3GaO6. The novel 'Gd3FeO6' phase appears to be kinetically stabilized in the nano state.

  • 13.
    Uvdal, Kajsa
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ahrén, Maria
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Selegård, Linnéa
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Abrikossova, Natalia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Functionalized Gd2O3 Nanoparticles to Be used for MRI Contrast Enhancement2008In: AVS,2008, 2008Conference paper (Other academic)
  • 14.
    Uvdal, Kajsa
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Ahrén, Maria
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Söderlind, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology.
    Klasson, Anna
    Linköping University, Faculty of Health Sciences. Linköping University, Department of Medicine and Health Sciences, Radiology . Linköping University, Center for Medical Image Science and Visualization, CMIV.
    Vahlberg, Cecilia
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Petoral, Rodrigo Jr
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Sensor Science and Molecular Physics .
    Engström, Maria
    Linköping University, Faculty of Health Sciences. Linköping University, Center for Medical Image Science and Visualization, CMIV. Linköping University, Department of Clinical and Experimental Medicine, Cell Biology.
    Käll, Per-Olov
    Linköping University, The Institute of Technology. Linköping University, Department of Physics, Chemistry and Biology, Physical Chemistry .
    Functionalized rare earth nanocrystals for MRI contrast enhancement2006In: e-MRS,2006, 2006Conference paper (Other academic)
    Abstract [en]

      

1 - 14 of 14
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf