Change search
Refine search result
12 1 - 50 of 84
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Byggnader i energisystem2016Report (Other academic)
    Abstract [sv]

    Denna rapport ger en kortfattad översikt och syntes av tvärvetenskapliga forskningsresultat från verksamheten i konsortiet Byggnader i energisystem inom forskarskolan Program Energisystem. Tonvikten ligger på tiden från forskarskolans start 1997 till dess 15-årsjubileum 2012, men hänvisningar görs även till forskning publicerad därefter. Utgångspunkten har varit att lyfta fram det tvärvetenskapliga inom forskningen för att visa hur forskarskolan har bidragit till tvärvetenskaplig kunskaps- och metodutveckling.

    I rapporten ges en översikt över fallstudier och avhandlingar inom konsortiet och de tvärvetenskapliga forskningsresultaten sammanfattas inom tre huvudsakliga tematiska områden: (1) Passivhus: boende och energieffektiva byggnadstekniker,

    (2) Energieffektivisering: processer och aktörer, samt (3) Energianvändning, vardagsaktiviteter och småskalig solenergi i hushåll. Tvärvetenskapliga metoder och resultat sammanfattas och utvecklingen av samarbeten och angreppssätt beskrivs. Rapporten avslutas med några sammanfattande reflektioner kring hur framgångsrik tvärvetenskaplig forskning bör bedrivas.

  • 2.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Industriella energisystem2016Report (Other academic)
    Abstract [sv]

    Denna syntesrapport är en sammanfattning och analys av den forskning som bedrivits inom ramen för det Industriella konsortiet från år 1997 (konsortiets verksamhet startade 1999) inom ramen för forskarskolan Program Energisystem. Under denna tid har 25 doktorsavhandlingar och en licentiatavhandling producerats inom det Industriella konsortiet. Avhandlingarna sammanfattas och analyseras i denna syntesrapport och arbetet avgränsas då till att studera avhandlingarnas Problemområde, Verktyg/Metod/Teori, Systemgräns, studerad Sektor och Övergripande resultat. Vidare ges, med utgångspunkt från dessa forskningsresultat, förslag på fortsatt forskning för hållbara och effektiva energisystem.

    Många viktiga problemområden har studerats inom ramen för forskarskolans Industrikonsortium. Ett flertal avhandlingar behandlar möjligheter att minska utsläppen av växthusgaser från industrin och här har flera sektorer studerats, bland annat massa- och pappersindustrin, järn- och stålindustrin, kemiindustrin och oljeraffinaderiindustrin. Ett centralt tema i avhandlingarna är potentialer för energieffektivisering i industrisektorn, inte minst vid införande av bioraffinaderikoncept i framtiden. Här analyseras t.ex. tekniska potentialer, kostnadseffektivitet för energieffektiviseringsåtgärder, samt betydelsen av energiledning och styrmedel.

    I avhandlingarna har en mängd olika metoder och verktyg använts. Den i särklass mest använda vetenskapliga metoden är intervjuer (15) följt av scenarioanalys (10), dokumentstudier (9), simuleringsberäkningar (9), pinchanalys (9) och optimering (8). Fallstudiemetodik där mer än en metod används för att studera ett specifikt fall, t.ex. ett företag, förekommer i flera avhandlingar. En grundtanke i forskarskolan Program Energisystem har varit att forskaren måste vara medveten om att resultat från energisystemanalyser kan påverkas av vilka systemgränser som valts. I flertalet av Industrikonsortiets avhandlingar har Europas elsystem utgjort systemgräns då effekter av förändrad elanvändning eller elproduktion analyserats.

    Industrikonsortiets forskningsresultat visar på många intressanta slutsatser. Det påvisas att det finns energieffektiviseringspotentialer både i nya investeringar och i energiledningsåtgärder, som att justera driftsbetingelser för befintlig teknisk utrustning och ändra beteenden. Det konstateras också att energisamarbeten mellan industri och energibolag med syfte att öka användningen av industriell överskottsvärme i många fall är en hållbar lösning som minskar regioners behov av primärenergi och reducerar utsläppen av växthusgaser. Hinder mot sådana samarbeten kan vara att detta inte är en del av industrins kärnverksamhet. Det konstateras även att energisamarbeten mellan närliggande anläggningar i ett industrikluster kan leda till avsevärt större energieffektiviseringspotentialer än om var och en av de ingående industrierna arbetar enbart med interna åtgärder. Hinder mot denna typ av samarbete är brist på etablerade affärsmodeller. Forskningen visar på ett behov av fortsatta studier kring begreppet kärnverksamhet och dess påverkan på energifrågan i svensk industrin. Avskiljning och lagring av koldioxid (CCS) från industrin har studerats och här konstateras att denna lösning inte är ekonomiskt lönsam med dagens förutsättningar. Det rekommenderas därför att framtida forskning bedrivs för att studera vilka styrmedel som skulle behövas för att CCS ska bli ekonomiskt intressant för industrin. En annan viktig fråga är hur energitjänsteföretag ska formulera affärsmodeller och strategier kring CCS, samt hur de kan samarbeta med industrin för att på affärsmässiga grunder få till stånd CO2– avskiljning, transport och lagring. Även framtida forskning kring styrmedel, t.ex. energitjänster, för ökad energieffektivitet i industrisektorn förordas. Resultat från Industrikonsortiets avhandlingar visar att processintegrationsverktyget pinchanalys kan kombineras med optimeringsverktyg (i detta fall MIND) vid analys av industriella energisystem. Denna metodkombination ger intressanta resultat varför fortsatt forskning förordas kring kombinationer av olika processintegrationsmetoder. I flertalet avhandlingar har företagsdata använts som indata vid exempelvis modellering och processintegrationsstudier. Detta har accentuerat behovet av ett standardiserat protokoll vid insamling av företagsdata. Ett sådant protokoll kan öka reliabiliteten på indata och förslagsvis användas vid fallstudier.

    Avslutningsvis kan konstateras att trots närmare 20 års tvärvetenskaplig forskning mellan samhällsvetare och teknikvetenskaperna finns det fortfarande mycket mer att beforska och utveckla.

  • 3.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Forskningssyntes för konsortiet Lokala och regionala energisystem2016Report (Other academic)
    Abstract [sv]

    Forskarskolan Program Energisystem har med sina fem deltagande forskningsavdelningar från Chalmers tekniska högskola, Linköpings universitet, KTH och Uppsala universitet varit banbrytande inom tvärvetenskaplig energisystemforskning och dess tre konsortier har spelat en viktig roll för forskarskolans utveckling. Konsortierna är inriktade på byggnader i energisystem, industriella energisystem samt lokala och regionala energisystem. I varje konsortium har doktorander och seniorer från minst två av de deltagande avdelningarna bedrivit tvärvetenskaplig forskning.

    I det lokala och regionala konsortiet har forskningsfrågorna kretsat kring aktörer och processer av betydelse för energisystemen i svenska kommuner, län och regioner. Inom konsortiet har frågeställningar om miljömässigt, socialt och ekonomiskt hållbara lokala och regionala energisystem bland annat studerats genom att analysera aktörers agerande och politiska processer inom de tekniska, ekonomiska och institutionella villkor som utgör begränsningar och möjligheter för energisystemen. En tydlig trend inom konsortiets forskning under forskarskolans arton år är att inriktningen gått i riktning från lokal till regional och från stationära till mobila energisystem. Den förskjutningen följer också den ökande betydelse som regioner i form av länsstyrelser har fått för samordningen av energi- och klimatplaneringen i Sverige under det senaste decenniet. Kommunerna har fortfarande en dominerande position genom den energirelaterade infrastruktur som de förfogar över men en förskjutning mot ett mer regionalt inflytande är tydlig.

    Totalt har 26 doktors- och en licentiatexamen avlagts av konsortiets doktorander och dessa alumner är nu verksamma inom energirelaterade verksamheter Sverige. Den främsta representationen finns inom myndigheter och akademier.

  • 4.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Huvudrapport2016Report (Other academic)
    Abstract [sv]

    Idén att samhällsvetenskaplig och teknisk energisystemforskning måste vävas samman för att utveckla ny kunskap och få ökad samhällsnytta var utgångspunkt när Program Energisystem startade år 1997.

    Program Energisystem identifierade tidigt kärnvärden som visades vara viktiga framgångsfaktorer:

    • Energisystem med tyngdpunkt på användarsidan
    • Tvärvetenskaplig, universitets- och fakultetsöverskridande
    • forskning och forskarutbildning
    • Sammanhållen forskarskola
    • Finansiering av hela doktorandprojekt
    • Samarbeten i tematiska forskningsområden
    • Kontinuerlig tvärvetenskaplig utveckling
    • Långsiktig finansiering av samordningsstruktur

    Program Energisystems arbete har kännetecknats av:

    • Val av samhällsrelevanta projekt av hög vetenskaplig kvalitet
    • Gemensamma tvärvetenskapliga kurser och projektarbeten
    • Tvärvetenskaplig handledning
    • Kontinuerligt arbetande fora för diskussion
    • och kontakter över ämnesgränser
    • Forskningssamarbeten mellan seniorer i olika ämnen
    • Aktivt doktorand- och alumninätverk

    Forskarutbildningens målsättning har varit att utbilda bättre samhällsvetare

    och bättre ingenjörer, inte att göra samhällsvetare av ingenjörerna eller ingenjörer

    av samhällsvetarna.

    I den kontinuerliga utvecklingen av Program Energisystem har ett förtroendefullt samarbete utvecklats som möjliggjort kontinuerliga förbättringar av forskningen och forskarutbildningen.

    Arvet från Program Energisystem har förts vidare i den nya Forskarskola Energisystem. Forskarskola Energisystem har en delvis annan struktur men bygger innehållsmässigt vidare på centrala idéer från Program Energisystem. Det finns ett fortsatt stort behov av tvärvetenskaplig kunskapsutveckling på energiområdet som främst handlar om att förstå komplicerade samband och processer och hur dessa kan påverkas.

  • 5.
    Alvfors, Per
    et al.
    Energiprocesser, Kungliga Tekniska Högskolan, KTH, Stockholm.
    Ellegård, Kajsa
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Harvey, Simon
    Energiteknik/Rymd-, geo- och miljövetenskap, Chalmers Tekniska högskola, Göteborg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Palm, Jenny
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Widén, Joakim
    Institutionen för teknikvetenskaper, Byggteknik, Uppsala universitet.
    Forskarskolan Program Energisystem: Kunskapsutveckling genom samverkanmellan teknik- och samhällsvetenskap: Slutrapport 2016, Publikationer från Program Energisystem2016Report (Other academic)
    Abstract [sv]

    Det finns en omfattande publicering från Program Energisystem. Förutom 78 doktorsavhandlingar och 16 licentiatavhandlingar så har forskarstuderande och seniorer publicerat ytterligare minst 500 publikationer inom ramen för Program Energisystem.

    I denna rapport förtecknas dessa publikationer.

  • 6.
    Ammenberg, Jonas
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Svensson, Bo
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Biogas Research Center.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Björn, Annika
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences. Linköping University, Biogas Research Center.
    Karlsson, Martin
    Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Tonderski, Karin
    Linköping University, Department of Physics, Chemistry and Biology, Biology. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Eklund, Mats
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Biogas Research Center, BRC: Slutrapport för etapp 12015Report (Other academic)
    Abstract [en]

    Biogas Research Center (BRC) is a center of excellence in biogas research funded by the Swedish Energy Agency, Linköping University and a number of external organizations with one-third each. BRC has a very broad interdisciplinary approach, bringing together biogas-related skills from several areas to create interaction on many levels:

    • between industry, academia and society,
    • between different perspectives, and
    • between different disciplines and areas of expertise.

    BRC’s vision is:

    BRC contributes to the vision by advancing knowledge and technical development, as well as by facilitating development, innovation and business. Resource efficiency is central, improving existing processes and systems as well as establishing biogas solutions in new sectors and enabling use of new substrates.

    For BRC phase 1, the first two year period from 2012-2014, the research projects were organized in accordance with the table below showing important challenges for biogas producers and other stakeholders, and how these challenges were tackled in eight research projects. Five of the projects had an exploratory nature, meaning that they were broader, more future oriented and, for example, evaluated several different technology paths (EP1-5). Three projects focused more on technology and process development (DP6-8).

    This final report briefly presents the background and contains some information about competence centers in general. Thereafter follows more detailed information about BRC, for example, regarding the establishment, relevance, organization, vision, corner stones and development. The participating organizations are presented, both the research groups within Linköping University and the partners and members. Further on, there is a more detailed introduction to and description of the challenges mentioned in the table above and a short presentation from each of the research projects, followed by some sections dealing with fulfillment of objectives and an external assessment of BRC. Detailed, listed information is commonly provided in the appendices.

    Briefly, the fulfillment of objectives is good and it is very positive that so many scientific articles have been published (or are to be published) from the research projects and also within the wider center perspective. Clearly, extensive and relevant activities are ongoing within and around BRC. In phase 2 it essential to increase the share of very satisfied partners and members, where now half of them are satisfied and the other half is very satisfied. For this purpose, improved communication, interaction and project management are central. During 2015, at least two PhD theses are expected, to a large extent based on the research from BRC phase 1.

    In the beginning of 2014 an external assessment of BRC was carried out, with the main purpose to assess how well the center has been established and to review the conditions for a future, successful competence center. Generally, the outcome was very positive and the assessors concluded that BRC within a short period of time had been able to establish a well-functioning organization engaging a large share of the participants within relevant areas, and that most of the involved actors look upon BRC as a justifiable and well working investment that they plan to continue to support. The assessment also contributed with several relevant tips of improvements and to clarify challenges to address.

    This report is written in Swedish, but for each research project there will be reports and/or scientific papers published in English.

    The work presented in this report has been financed by the Swedish Energy Agency and the participating organizations.

  • 7.
    Andersson, Elias
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Paramonova, Svetlana
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises - A dataset analysis from the national energy audit program2018In: Renewable & sustainable energy reviews, ISSN 1364-0321, E-ISSN 1879-0690, Vol. 93, p. 165-177Article, review/survey (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most vital activities for the mitigation of climate change. Consequently, policy initiatives from governments addressing both energy-intensive and small and medium-sized industry have been enacted. In this paper, the energy end-use and the energy efficiency potential among industrial small and medium-sized companies participating in the Swedish Energy Audit Program are reviewed. The three manufacturing industries of wood and cork, food products and metal products (excluding machinery and equipment) are studied. A unique categorization of their production processes energy end-use is presented, the results of which show that the amount of energy used in various categories of production processes differ between these industries. This applies to support processes as well, highlighting the problem of generalizing results without available bottom-up energy end-use data. In addition, a calculation of conservation supply curves for measures related to production processes is presented, showing that there still remains energy saving potential among companies participating in the Swedish Energy Audit Program. However, relevant data in the database used from the Swedish Energy Audit Program is lacking which limits the conclusions that can be drawn from the conservation supply curves. This study highlights the need to develop energy policy programs delivering high-quality data. This paper contributes to a further understanding of the intricate matters of industrial energy end-use and energy efficiency measures.

  • 8.
    Andersson, Viktor
    et al.
    Chalmers, Sweden.
    Broberg, Sarah
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Hackl, Roman
    Chalmers, Sweden.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Chalmers, Sweden.
    Algae-based biofuel production as part of an industrial cluster2014In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 71, p. 113-124Article in journal (Refereed)
    Abstract [en]

    This paper presents a study on the production of biofuels from algae cultivated in municipal wastewater in Gothenburg, Sweden. A possible biorefinery concept is studied based on two cases; Case A) combined biodiesel and biogas production, and Case B) only biogas production. The cases are compared in terms of product outputs and impact on global CO2 emissions mitigation. The area efficiency of the algae-based biofuels is also compared with other biofuel production routes. The study investigates the collaboration between an algae cultivation, biofuel production processes, a wastewater treatment plant and an industrial cluster for the purpose of utilizing material flows and industrial excess heat between the actors. This collaboration provides the opportunity to reduce the CO2 emissions from the process compared to a stand-alone operation. The results show that Case A is advantageous to Case B with respect to all studied factors. It is found that the algae-based biofuel production routes investigated in this study has higher area efficiency than other biofuel production routes. The amount of algae-based biofuel possible to produce corresponds to 31 MWfuel for Case A and 26 MWfuel in Case B.

  • 9.
    Backlund, Sandra
    et al.
    Naturvårdsverket, Sweden.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Paramonova, Svetlana
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Rohdin, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    A regional method for increased resource-efficiency in industrial energy systems2014In: eceee Industrial Summer Study Proceedings, 2014Conference paper (Refereed)
    Abstract [en]

    The impact of global climate change as a result of greenhouse gas emissions (GHG), primarily from the use of fossil fuels, is demanding actions from all sectors of society. The industry sector is one of the world’s largest energy using sectors and GHG emitters. Improved energy efficiency in industry is one of the foremost means of improving energy efficiency and reducing GHG emissions. Research shows that despite large untapped potentials for improved energy efficiency in industry, cost-efficient energy efficiency measures are not always implemented, explained by the existence of barriers to energy efficiency, e.g. information imperfections and asymmetries. Moreover, research shows that a major energy efficiency potential lies in the energy system and the way it is governed. For regional governments, the industrial energy use is difficult to affect as they only have indirect power to influence the decisions in those organizations. This underlies the importance of developing methods on how a region can support and effectively contribute to energy efficiency improvements in the local industry. So far, methods are limited related to regional governance of industrial energy systems. The aim of this paper is to present a structured methodology for improved regional resource efficiency in the local industry from a regional perspective, inspired by the Triple Helix Model. Results display the county administrative board of administration’s current method how to target industry, and ends with a proposal for how the methods could be improved.

  • 10.
    Bengtsson, C
    et al.
    Chalmers.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Co-operation of the MIND-method and the Pinch Technology: Energy Efficient Pre-evaporation of Bleach Plant Filtrate Using Waste Heat1999Book (Other academic)
    Abstract [en]

    In order to decrease the environmental impacts caused by the pulp- and paper industry it is nowadays more or less common to perform a closure of the mill. The closure of the bleach plant will result in a minimal intake of fresh water and thereby the effluent will be contaminated to a greater extent. The bleach plant filtrate can be mixed with the black liquor and combusted in the soda recovery boilers. The necessity of pre-evaporating the bleach plant filtrate will thereby arise. In this study some alternatives have been investigated how to process integrate a pre-evaporation plant. Three alternatives have been investigated where the pre-evaporation can be fulfilled by using live steam only or live steam combined with waste heat. It can also be achieved by using a mechanical vapour recompression unit, which uses low temperature waste heat to accomplish the pre-evaporation.

     

    Due to the complexity of the mill two different methods have been used to evaluate the alternatives for pre-evaporation. The pinch-method is used on a lower aggregation level where the different components for pre-evaporation is considered, while the MIND-method is used on the higher aggregation level to take into account the whole mill.

     

    Two different scenarios have been studied, one with the existing electricity prices and one with an increase of the electricity prices with 50%. In both scenarios it is shown preferable to use the live steam/waste heat alternative compared to the ”worst case”, using mere live steam. The investment costs for the live steam/waste heat case will imply that the payback period will be approximately 3.5 years. The mechanical vapour recompression alternative is shown profitable with the existing electricity prices, compared to the live steam case. But due to the high investment costs it gives an unacceptable payback period. When the electricity price is increased by 50% it shows not profitable. In case of an increase of the fuel prices the mechanical vapour recompression alternative will be more profitable due to the usage of less fuel compared to the other cases.

  • 11.
    Bengtsson, Cecilia
    et al.
    Department of Heat and Power Technology, Chalmers University of Technology, Göteborg, Sweden.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Department of Heat and Power Technology, Chalmers University of Technology, Göteborg, Sweden.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Co-ordination of pinch technology and the MIND method: applied to a Swedish board mill2002In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 22, no 2, p. 133-144Article in journal (Refereed)
    Abstract [en]

    By combining the pinch technology and the MIND method, it is possible to identify beneficial and energy-efficient measures in a complex industrial energy system. By tackling a problem on the two different aggregation levels, the result is thoroughly evaluated and durable measures are achieved. The strength of the combination of methods is elucidated in a case study where a Scandinavian pulp and paper mill is analysed. The studied problem concerns pre-evaporation of effluents in a board mill using excess heat. Different alternatives are evaluated, taking into account economic, technical and practicable constraints. The results show that it is cost-effective to pre-evaporate the effluent using excess heat in the studied mill.

  • 12.
    Bengtsson, Cecilia
    et al.
    Department of Heat and Power Technology, Chalmers University of Technology, Gothenburg.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Berntsson, Thore
    Department of Heat and Power Technology, Chalmers University of Technology, Gothenburg.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Cost-efficient CO2-reduction in the pulp and paper industry: a case study2002In: International Conference on Sustainable Energy Technologies, 2002, Porto, Portugal: FEUP , 2002, p. EES58-Conference paper (Refereed)
    Abstract [en]

    It is generally accepted that human activities have a large influence on global climate. In order to minimize human impact on global warming, regulations and agreements may be introduced for all CO2‑generating sectors. Therefore, measures to reduce CO2-emissions will be of importance to the industrial sector. Strategic decisions and long-term thinking are needed to comply with the regulations and to fulfil the agreements.

    The pulp and paper industry is an energy intensive sector with relatively large potentials to accomplish energy efficiency measures that result in reduction of CO2-emissions. To settle the cost-effectiveness for each measure a number of system parameters have to be considered, such as investment costs, boundary conditions and reference systems.

    This paper presents two methods, pinch technology and the MIND method. These methods are used for analysis of industrial energy systems considering different parameters and aspects. Pinch technology is used for thermodynamic and economic evaluation of process integration possibilities and the MIND method is used for strategic evaluation of different energy efficiency measures. Foundation for long-term decision-making can be obtained by co-ordinating the results from the two methods. In this paper, cost-effectiveness has been determined for different energy efficiency measures. The measures are non-conventional evaporation and heat pumping. The case studied is from a Swedish board mill. Economic potentials and consequences for these CO2-reducing measures are discussed from both an industrial and a societal perspective.

  • 13.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Backlund, Sandra
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Industrial excess heat deliveries to Swedish district heating networks: drop it like it's hot2012In: Energy Policy, ISSN 0301-4215, E-ISSN 1873-6777, Vol. 51, p. 332-339Article in journal (Refereed)
    Abstract [en]

    Using industrial excess heat in District Heating (DH) networks reduces the need for primary energy and is considered efficient resource use. The conditions of Swedish DH markets are under political discussion in the Third Party Access (TPA) proposal, which would facilitate the delivery of firms' industrial excess heat to DH networks. This paper estimates and discusses the untapped potential for excess heat deliveries to DH networks and considers whether the realization of this potential would be affected by altered DH market conditions. The results identify untapped potential for industrial excess heat deliveries, and calculations based on estimated investment costs and revenues indicate that realizing the TPA proposal could enable profitable excess heat investments.

  • 14.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems.
    SYSTEMS ANALYSIS AND CO2 REDUCTIONS USING INDUSTRIAL EXCESS HEAT2013Conference paper (Other academic)
    Abstract [en]

    The adopted Energy Efficiency Directive stresses the importance of using excess heat as a way to reach the EU target of primary energy consumption. Utilization of industrial excess heat may result in decreased energy demand, CO2 emissions reduction, and economic gains. In this study, an energy systems analysis is performed with the aim of investigating how excess heat should be used, and the impact of global CO2 emissions. The manner in which the heat is recovered will affect the system. The influence of excess heat recovery and the trade-off between heat recovery for heating or cooling applications and electricity production has been investigated using the energy systems modeling tool reMIND. The model has been optimized with regard to system cost. The results show that it is favorable to recover the available excess heat in all the investigated energy market scenarios, and that electricity production is not a part of the optimal solution. The trade-off between utilization of excess heat in the heating or cooling system depends on the energy market prices and the type of heat production. The introduction of excess heat also reduces the CO2 emissions in the system for all the studied energy market scenarios.  

  • 15.
    Broberg, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Svensson, Inger-Lise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Restenergi inom industrin i Östergötlands och Örebro län: Resultat av enkätundersökning av 85 företag2011Report (Other academic)
    Abstract [sv]

    Bakgrund: Under våren 2011 har Länsstyrelsen Östergötlands län och Länsstyrelsen i Örebro län inventerat restenergin inom industrin i Östergötlands och Örebro län. Enkäten som skickades ut utformades i samarbete med Linköpings Universitet och skickades ut till 85 industrier i länen.

    Syfte: Syftet med undersökningen är att undersöka mängden tillgänglig restenergi i industrin inom Östergötlands och Örebro län. Enkäten syftade till att få fram värmetillgången inom företagen, dels total tillgång i länen och dels spillvärme per län. Syftet med rapporten är också att översiktligt undersöka möjliga användningsområden för den tillgängliga restvärmen. Genom användning av energiinnehållet för uppvärmningsbehov internt eller som när-/fjärr-värme kan användningen av fossila bränslen och el minskas.

    Metod: Metoden som användes för att uppfylla ovanstående syfte är en enkätstudie. Tillsammans med Energisystem vid Linköpings universitet tog Länsstyrelsen fram en lista på frågor inför enkätutskicket. 85 företag inom Östergötlands och Örebro län valdes ut och en enkät sammanställdes av Länsstyrelsen i Östergötlands, Länsstyrelsen i Örebro län och Linköpings Universitet. Företagen är verksamma inom miljö, verkstads-, stål-, glas-, gruv-, kemi-, pappers-, drivmedel- och betongindustrin. Informationen om enkäten skickades ut under våren och sommaren via e-post och svar har inkommit från 28 företag via webbaserade enkätplattformen. Bland de 28 företagen som svarade på enkäten har 9 företag mindre än 50 anställda och ytterligare 15 företag mindre än 500 anställda.

    I den andra delen av studien studeras möjliga användningsområden för användning av den tillgängliga restenergin i länen.

  • 16.
    Broberg Viklund, Sarah
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Industrial excess heat use: Systems analysis and CO2 emissions reduction2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 152, p. 189-197Article in journal (Refereed)
    Abstract [en]

    The adopted energy efficiency directive stresses the use of excess heat as a way to reach the EU target of primary energy use. Use of industrial excess heat may result in decreased energy demand, CO2 emissions reduction, and economic gains. In this study, an energy systems analysis is performed with the aim of investigating how excess heat should be used, and the impact on CO2 emissions. The manner in which the heat is recovered will affect the system. The influence of excess heat recovery and the trade-off between heat recovery for heating or cooling applications and electricity production has been investigated using the energy systems modeling tool reMIND. The model has been optimized by minimizing the system cost. The results show that it is favorable to recover the available excess heat in all the investigated energy market scenarios, and that heat driven electricity production is not a part of the optimal solution. The trade-off between use of recovered excess heat in the heating or cooling system depends on the energy market prices and the type of heat production. The introduction of excess heat reduces the CO2 emissions in the system for all the studied energy market scenarios. (C) 2014 Elsevier Ltd. All rights reserved.

  • 17.
    Feiz, Roozbeh
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering. Linköping University, Biogas Research Center. Biogas Research Center.
    Ammenberg, Jonas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Björn, Annika
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Yufang, Guo
    School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Liu, Yonghui
    School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
    Liu, Yuxian
    Linköping University. Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou, China.
    Masuda, Laura Shizue Moriga
    Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
    Enrich-Prast, Alex
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Rohracher, Harald
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Trygg, Kristina
    Linköping University, Department of Thematic Studies, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Shakeri Yekta, Sepehr
    Linköping University, Department of Thematic Studies, Tema Environmental Change. Linköping University, Faculty of Arts and Sciences.
    Zhang, Fagen
    School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
    Biogas Potential for Improved Sustainability in Guangzhou, China: A Study Focusing on Food Waste on Xiaoguwei Island2019In: Sustainability, ISSN 2071-1050, E-ISSN 2071-1050, Vol. 11, no 6Article in journal (Refereed)
    Abstract [en]

    As a result of rapid development in China and the growth of megacities, large amounts of organic wastes are generated within relatively small areas. Part of these wastes can be used to produce biogas, not only to reduce waste-related problems, but also to provide renewable energy, recycle nutrients, and lower greenhouse gases and air polluting emissions. This article is focused on the conditions for biogas solutions in Guangzhou. It is based on a transdisciplinary project that integrates several approaches, for example, literature studies and lab analysis of food waste to estimate the food waste potential, interviews to learn about the socio-technical context and conditions, and life-cycle assessment to investigate the performance of different waste management scenarios involving biogas production. Xiaoguwei Island, with a population of about 250,000 people, was chosen as the area of study. The results show that there are significant food waste potentials on the island, and that all studied scenarios could contribute to a net reduction of greenhouse gas emissions. Several socio-technical barriers were identified, but it is expected that the forthcoming regulatory changes help to overcome some of them.

  • 18.
    Gong, Mei
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Coordination of exergy analysis and the MIND method - applied to a pulp and board mill2004In: International Journal of Exergy, ISSN 1742-8297, E-ISSN 1742-8300, Vol. 1, no 3, p. 289-302Article in journal (Refereed)
    Abstract [en]

    The MIND (Method for analysis of INDustrial energy systems) method has been developed for cost optimisation of industrial energy systems, mainly with regard to quantities of energy. Exergy analysis reveals losses, efficiencies and possible improvements. These methods can be combined in order to improve industrial energy systems. In this paper, a Swedish pulp and board mill is used as a case study. The efficiencies of the processes in the mill are evaluated using exergy analysis. The most exergy inefficient processes are indicated and some improvements are suggested. This case study shows that it is the boilers and the evaporation plant that are the most inefficient processes, with efficiencies down to 29%. Different investment alternatives for these processes are studied and cost optimisation is achieved using the MIND method. The study shows that the energy costs can be reduced by up to 15 million Euros per year while the exergy efficiency can be improved by up to 14%. The combined approach shows that the energy cost-efficient alternatives are also usually exergy efficient.

  • 19.
    Gong, Mei
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Industry and the energy market - optimal choice of measures using the MIND method2002In: CRIS Conference on Power Systems and Communications Infrastructures for the future, 2002, China: CRIS, International Institute for Critical Infrastructures , 2002Conference paper (Refereed)
    Abstract [en]

    No abstract available.

  • 20.
    Gustafsson, Marcus
    et al.
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Cruz, Igor
    Linköping University, Biogas Research Center. Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Svensson, Niclas
    Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Technologies for production of liquefied biogas for heavy transports: Energy, environmental, and economic analysis2019Conference paper (Refereed)
    Abstract [en]

    The heavy transport sector is facing a growth within technology and infrastructure for use of natural gas. This opens an opportunity for the biogas market to grow as well, especially in the form of liquefied biogas (LBG). This study presents an investigation of the energy balance, environmental impact and economic aspects of current technologies for production of LBG: mixed refrigerant cycle, nitrogen cycle, pressure reduction and cryogenic liquefaction. Calculations are based on a review of recent literature and data from the biogas industry. The results show that mixed refrigerant cycle is the most economic and energy efficient technology for liquefaction of upgraded biogas, followed by nitrogen cycle. The lowest electricity use and environmental impact is achieved if the liquefaction process is preceded by amine scrubber upgrading. Pressure reduction liquefaction is inexpensive and can be an alternative in areas connected to a high-pressure gas grid, but as a method for liquefaction it is not very efficient as only about 10% of the incoming gas is liquefied and the rest remains in its gaseous form. Moreover, addition of propane for distribution in the natural gas grid increases the environmental impact compared to other distribution pathways. The cryogenic technology has a higher energy use than other liquefaction technologies but compensates by also including CO₂ separation, which could make it suitable if there is no existing upgrading facility in place. However, there are technical difficulties to overcome and it is not widely implemented.

  • 21.
    Gyberg, Per
    et al.
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Karlsson, MagnusLinköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.Ingelstam, LarsLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    System i fokus - uppsatser med teori- och metodexempel från energiområdet: uppsatser från doktorandkursen Systemanalys med metodexempel från energiområdet2005Collection (editor) (Other academic)
  • 22.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Haraldsson, Joakim
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy efficient supply chain of an aluminium product in Sweden – What can be done in-house and between the companies?2018In: eceee 2018 Industrial Summer Study proceedings / [ed] Therese Laitinen Lindström, Ylva Blume & Nina Hampus, Stockholm, Sweden: European Council for an Energy Efficient Economy (ECEEE), 2018, p. 369-377Conference paper (Refereed)
    Abstract [en]

    According to the Energy Efficiency Directive executed by the European Union, each member state is obliged to set a national target on energy efficiency. This requirement constitutes the basis for governments to formulate policy measures directed towards industrial companies. Such policy measures, along with the demand for cost-effective production to remain competitive on the market, motivates industrial companies to improve their energy efficiency. The aluminium industry is energy intensive and consumes substantial amounts of electricity and fossil fuels, resulting in both direct and indirect greenhouse gas emissions. This paper presents a study of the production of an aluminium product in Sweden in terms of implemented energy efficiency measures in the supply chain and potential areas for further improvement. Most previous studies have focused on energy efficiency measures in individual companies (value chains). However, this paper presents and analyses energy efficiency measures not only in each individual company but also in the entire supply chain of the product. The supply chain studied starts with secondary aluminium production followed by the production of a part of an automobile motor and ends with installing the motor detail in a car. Empirical data were gathered through a questionnaire and a focus group. The study shows the great potential for further energy efficiency improvements in the value chains of each individual company and in the whole supply chain. The work shown here is a part of a larger research project performed in close cooperation with the Swedish aluminium industry.

  • 23.
    Johansson, Maria
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Bio-SNG as fuel in steel industry heating furnaces: integration of a biomass gasifier with a steel plant2012In: Asia Steel International Conference 2012, 2012Conference paper (Other academic)
    Abstract [en]

    Climate change, as a result of anthropogenic greenhouse gas (GHG) emissions, is of great concern for society today. Industry accounts for almost 40% of global CO2 emissions and consequently it is important that this sector investigate options to reduce its CO2 emissions. In this paper, an economic evaluation of integration of a biomass gasifier with a steel plant is performed. Synthetic natural gas (bio-SNG) from the gasifier substitutes liquefied petroleum gas as fuel in the steel plant’s heating furnaces. Eight future market scenarios are used to analyse investment opportunities to integrate production of bio-SNG with a case study steel plant. Results from the analysis show that high fossil fuel prices could make integration of a biomass gasifier and fuel conversion profitable. Moreover, profitability is highly dependent on biomass price. At current price levels, production cost for bio-SNG is 82 EUR/MWh.

  • 24.
    Johnsson, Simon
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Andersson, Elias
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, Faculty of Science & Engineering.
    Energy savings and greenhouse gas mitigation potential in the Swedish wood industry2019In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 187, article id 115919Article in journal (Refereed)
    Abstract [en]

    Improving energy efficiency in industry is recognized as one of the most crucial actions for mitigating climate change. The lack of knowledge regarding energy end-use makes it difficult for companies to know in which processes the highest energy efficiency potential is located. Using a case study design, the paper provides a taxonomy for energy end-use and greenhouse gas (GHG) emissions on a process and energy carrier level. It can be seen that drying of wood is the largest energy using and GHG emitting process in the studied companies. The paper also investigates applied and potentially viable energy key performance indicators (KPIs). Suggestions for improving energy KPIs within the wood industry include separating figures for different wood varieties and different end-products and distinguishing between different drying kiln technologies. Finally, the paper presents the major energy saving and carbon mitigating measures by constructing conservation supply curves and marginal abatement cost curves. The energy saving potential found in the studied companies indicates that significant improvements might be achieved throughout the Swedish wood industry. Even though the scope of this paper is the Swedish wood industry, several of the findings are likely to be relevant in other countries with a prominent wood industry.

  • 25.
    Karlsson, Magnus
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    A pulp and paper mill in the deregulated electricity market: strategies for electricity productionManuscript (preprint) (Other academic)
    Abstract [en]

    The deregulated electricity market has changed the prerequisites for the different actors in the market, both electricity producing companies and electricity purchasers. Companies may purchase electricity directly on the spot market and/ or use different derivatives, such as forwards and futures, as hedging instruments. There are various strategies for acting in the market and this paper explores alternative strategies for a Swedish board mill where hedging contracts to secure the price of electricity cover part of the electricity demand. The remaining demand is purchased on the spot market or produced on site. The back-pressure turbines on site are subject to possible changes in order to determine whether it is profitable to make additional investments aimed at reducing costs.

    Producing electricity close to the demand is a favourable alternative due to reduced losses in the grid and a lesser risk of power failure. Using back-pressure turbines on site meets these requirements and may also help to reduce the risk of power shortages. In certain situations, offering electricity production when there is a lack of electric power in the national grid is a possible alternative aimed at increasing income.

    The result shows that the choice of hedging strategy strongly influences the possibility of reducing costs. It is also shown that the different hedging strategies depend on factors such as the amount of electricity produced on site and the spot price.

  • 26.
    Karlsson, Magnus
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    A systems approach to the reduction of oil demand in a Swedish board mill2004In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 29, no 1, p. 103-124Article in journal (Refereed)
    Abstract [en]

    The possibility of reducing oil demand in the board mill at Skoghall, operated by Stora Enso, is analysed from a systems perspective. Identification of different key factors influencing the potential for reducing oil demand includes measures within the mill, e.g. steam reduction measures, and boundary conditions, such as electricity prices. Different key factors influence each other to different extents, indicating that an analysis concerning interactions between the different factors is also vital. A survey of these factors influencing oil demand has been carried out and a sensitivity analysis, including a factorial design method, has been applied to the subject.

  • 27.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Analysing strategic energy-related investments in process industries: applied studies at a pulp and board mill2002Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The potential to reduce energy demand in industrial applications is often substantiaL Since energy cost represents a considerable share of the value added in several categories of process industries, a great potential exists for cutting costs through investment, for instance in energy efficiency improvements. However, industrial energy systems form complex relations not only within the industrial unit, but also in the interaction with their surroundings. Consequently, issues such as energy prices and governmental regulations influence the systems to varying extents. At the moment environmental issues, as manifested in the Kyoto agreement, and the new common European electricity market are in focus and are likely to influence the different boundary conditions that face European industries. Therefore, when major investments are to take place, changes in such boundary conditions need to be considered.

    Analysing potential investments in industrial energy systems require advanced methods that manage these complex relations and interactions and concurrently consider technical, economic and environmental issues. The purpose of the thesis is to develop and co-ordinate such methods and apply them to investments in an existing process industry. A method based on optimisation is used as the main tool for analysis. Other methods are applied as complements, for example to manage different aggregation levels and to facilitate sensitivity analyses.

    A pulp and board mill in central Sweden is used as a case study, where investments and changes in the utility systems and the main processes are analysed. These investments are subject to changes in boundary conditions and other mill-specific changes, showing both potentially interesting investments, and also the extensive influence of different boundary conditions. It is also shown that the methods used are appropriate for the purpose at hand.

  • 28.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Energikartläggning vid Sandvik AB, Västra Verken, Hus 92909 och 929102007Report (Other academic)
  • 29.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Modellering av Sandvik AB värmesystem tillsammans med SEAB2007Report (Other academic)
  • 30.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    reMIND - an energy systems modeling tool for decision support2011In: Interdisciplinary energy system methodology - A compilation of research methods used in the Energy Systems Programme, Program Energisystem , 2011Chapter in book (Other academic)
    Abstract [en]

    The purpose of this volume is to present the basics of our methods used within the Energy Systems Programme and to introduce how we have combined methods in earlier research. A research-oriented learning experience includes a formal and informal process of gaining and utilizing knowledge in an area of interest. In our short description of the methods,  e end up with a rather formal description of the essence of each method; however, this should be seen as an introduction to methods as a whole, where the reader can deepen their understanding of a method by looking at the reference literature given. We also hope that our book will contribute to vibrant discussions within your research environment concerning the pros and cons of different methods, and the possibilities and limitations when combining different methods. We also encourage the reader to contact people familiar with a method to discuss their experiences and understand that there are lessons to be learned from them.

    In this chapter, we will introduce the methods presented here. However, we will start by introducing the system perspective and explain how to do a system analysis.

  • 31.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    RESO - Regional energisystemoptimering, del II (Slutrapport)2008Report (Other (popular science, discussion, etc.))
  • 32.
    Karlsson, Magnus
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    The MIND method: A decision support for optimization of industrial energy systems – Principles and case studies2011In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 88, no 3, p. 577-589Article in journal (Refereed)
    Abstract [en]

    Changes in complex industrial energy systems require adequate tools to be evaluated satisfactorily. The MIND method (Method for analysis of INDustrial energy systems) is a flexible method constructed as decision support for different types of analyses of industrial energy systems. It is based on Mixed Integer Linear Programming (MILP) and developed at Linköping University in Sweden. Several industries, ranging from the food industry to the pulp and paper industry, have hitherto been modelled and analyzed using the MIND method. In this paper the principles regarding the use of the method and the creation of constraints of the modelled system are presented. Two case studies are also included, a dairy and a pulp and paper mill, that focus some measures that can be evaluated using the MIND method, e.g. load shaping, fuel conversion and introduction of energy efficiency measures. The case studies illustrate the use of the method and its strengths and weaknesses. The results from the case studies are related to the main issues stated by the European Commission, such as reduction of greenhouse gas emissions, improvements regarding security of supply and increased use of renewable energy, and show great potential as regards both cost reductions and possible load shifting.

  • 33.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Carlson, Annelie
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Increasing the use of wood fuel in a pulp and paper mill: investment opportunity and external costs2002In: Proceedings of the 10th Biennal Bioenergy Conference, 2002, p. 174-Conference paper (Refereed)
    Abstract [en]

    Wood fuel is a by-product produced in large quantities in the pulp and paper industry. It is a relatively cheap energy carrier that can be used to satisfy the internal demand for heat and electricity. Furthermore, it can replace the use of fossil fuels and thereby reduce emissions of CO2 and the related external costs. The aim of this study is to analyze the economics of using more wood fuel for energy purposes, as well as the economics of using wood fiber sludge as a fuel instead of delivering it to landfills. A pulp and paper mill in Sweden is analyzed and the study focuses on providing a demand for heat and electricity. An energy system model based on mixed integer linear programming is used to perform the study. The analysis illustrates the investment opportunity of a new boiler fuelled with bark and sludge. A business economic approach is compared with a socio-economic approach, in which some external costs are considered. The result of the comparison is that the investment opportunity for a wood fuel-boiler is greater when the external cost of production is considered. Furthermore, the amount of emissions associated with the energy conversion and related external costs is estimated for the different cases.

  • 34.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Gebremedhin, Alemayehu
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Klugman, Sofia
    Gävle University.
    Henning, Dag
    Optensys Energianal.
    Moshfegh , Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Regional energy system optimization - Potential for a regional heat market2009In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 86, no 4, p. 441-451Article in journal (Refereed)
    Abstract [en]

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO2 emissions from electricity production is important as the difference of emitted CO2 between the accounting methods exceeds 650 kton/year for some scenarios.

  • 35.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Ivner, Jenny
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology. Linköping University, Biogas Research Center.
    Final report for BRC EP3 (New industries)2015Report (Other academic)
    Abstract [en]

    In BRC EP3 focus has been on new industries. The goal has been to find some new industries where biogas production is a resource‐efficient way to take advantage of material flows that are not used today. From this goal seven activities were formulated and are in short: (A1) Present biogas solutions, (A2) Overview of new industrial sectors in Sweden regarding biogas production, (A3) Possibilities and impossibilities process‐wise, (A4) Energy and environmental impacts, (A5) Societal aspects, (A6) Selection of case studies, and (A7) Case study design. These activities needed different angles of approach and therefore a variety of methods were used in the project, e.g. literature studies, calculations, measurements, interviews and workshops. The results from the activities are presented in short below.

    A1: International comparison of biogas production at industrial sites, for example, is impossible to carry out as different classifications are used in different countries. In A1 a way to categorize biogas plants is proposed and discussed.

    A2: By screening and geographically pin‐pointing the food industry, eight clusters were chosen for deeper studies. A mapping of biogas potential was thereafter carried out in these clusters. The activity shows great potentials for some of the clusters regarding biogas production.

    A3: Process‐related feasibility for opportunities for the clusters studied in A2 is targeted. The general conclusion is that there are no severe aspects that imply that one should not continue working with a specific cluster or a specific substrate found in those clusters, regarding biogas production.

    A4: Each cluster found in A2 is assessed in terms of environmental aspects (climate, acidification and eutrophication), energy balance and economy, which were found being the most important assessment criteria when it comes to efficient biogas solutions. The results show, for example, that even though some of the clusters hold a large potential for biogas production some of these clusters do not imply profitable solutions or environmental advantages compared to the present situation of using the substrates. Moreover, the study shows that the end use of the biogas (electricity, heat and vehicle fuel) has significant influence on the results. It is shown that each cluster has a unique combination of substrates and unique alternatives for use of both substrates and produced biogas, implying different beneficial solutions. Sometimes the beneficial solutions differ dependent on what assessment criterion used.

    A5: Societal aspects were explored for each cluster found in A2. It is shown that there are differences between the clusters regarding institutional and organizational prerequisites. Important areas have been identified on both a national level (e.g. taxes) and regional level (e.g. cooperation between public and private sectors).

    A6: When selecting case studies it is found that the following aspects needs to be considered: (1) biogas potential, (2) character of substrates and other materials, (3) environmental aspects (climate, acidification and eutrophication), (4) influence on energy balances (5) economy, (6) use of biogas, and (7) societal aspects.

    A7: When designing case studies the same aspects as for A6 applies. However, when designing the case study it is also vital to consider where to put the system border and also consider the localization of the production unit (e.g. internal at a company or detached).

    Moreover, integration of biogas solutions with other types of material or energy flows has to be considered.

    All the stated parts in “Motivation and aim” are addressed in the project. Consequently, the target of the project is achieved.

  • 36.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Mardan, Nawzad
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Considering start-ups and shutdowns using an optimisation tool – Including a dairy production planning case study2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 107, p. 338-349Article in journal (Refereed)
    Abstract [en]

    There are many different aspects a production-planning model has to be able to handle to make a model adequate for the purpose. One aspect is the handling of start-ups and shutdowns for different processes. The production plan is likely to be changed when considering, for example, a cost connected to the start-up and/or shutdown of processes. Besides costs associated with start-ups and shutdowns, waste may be produced during the start-up and shutdown. However, there is also the possibility of carrying out soft start-ups and shutdowns or limiting the number of start-ups and shutdowns. Thus, start-ups and shutdowns have to be handled in an adequate way in models to produce reliable and accurate results. In optimisation tools, this may be dealt with by introducing certain constraints, including integers. In this paper, the implementation of alternative ways to consider start-ups and shutdowns are presented. This is done in the energy system optimisation tool reMIND, which deals with Mixed Integer Linear Programming (MILP) problems. The purpose of this paper is to show four alternatives to consider start-ups and shutdowns in optimisation models. This involves, in total, almost 50 constraints. Also, a simple dairy case study is included in the paper to visualise the effect of implementing the different alternatives to shutdowns.

  • 37.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Mardan, Nawzad
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Considering start-ups and shutdowns using an optimization tool: including a dairy production planning case studyManuscript (preprint) (Other academic)
    Abstract [en]

    There are many different aspects a production-planning model has to be able to handle to make a model adequate for the purpose. One aspect is the handling of start-ups and shutdowns for different processes. The production plan is likely to be changed when considering, for example, a cost connected to the start-up and/or shutdown of processes. Besides costs associated with start-ups and shutdowns, waste may be produced during the start-up and shutdown. However, there is also the possibility of carrying out soft start-ups and shutdowns or limiting the number of start-ups and shutdowns. Thus, start-ups and shutdowns have to be handled in an adequate way in models to produce reliable and accurate results. In optimisation tools, this may be dealt with by introducing certain constraints, including integers. In this paper, the implementation of alternative ways to consider start-ups and shutdowns are presented. This is done in the energy system optimisation tool reMIND, which deals with Mixed Integer Linear Programming (MILP) problems. The purpose of this paper is to show four alternatives to consider start-ups and shutdowns in optimisation models. This involves, in total, almost 50 constraints. Also, a simple dairy case study is included in the paper to visualise the effect of implementing the different alternatives to shutdowns.

  • 38.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Mardan, Nawzad
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Timing and sizing of investments in industrial processes– the use of an optimization tool2011In: ECOS 2010 Volume IV (Power plants and Industrial processes): Proceedings of ECOS 2010 Conference in Lausanne / [ed] Daniel Favrat, MER Francois Maréchal, 2011Conference paper (Refereed)
    Abstract [en]

    Investments of different kinds are vital for industries to stay competitive. However, there are several issues that need to be considered before investing, e.g. the timing and size of the investment. In this paper a methodology is presented for analysing investments form the point of view of optimal size and timing. The energy systems optimization tool reMIND is used as the basis of the modelling, and has been used in several industrial energy systems studies for various purposes. reMIND is based on Mixed Integer Linear Programming (MILP) and has been further developed to consider investments of different kinds. The different constraints needed to model the investment properly are presented together with the variables included in the objective function. A simple case study is also included to illustrate how the method is used. The results from the case study show that the timing and size of the different investments change, depending on the size of the proposed increase in production rate.

  • 39.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Mardan, Nawzad
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Larsson, Mikael
    Sandberg, Johan
    Luleå Tekniska Universitet, Energivetenskap.
    Från en vänlig användare till användarvänlighet – förbättringar av MIND-metoden – Slutrapport2011Report (Other academic)
  • 40.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, Jenny
    Linköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Kurser på tvären2007In: Att forska på tvären- Erfarenheter från 10 år av tvärvetenskap inom forskarskolan Program Energisystem / [ed] Jenny Palm, Magnus Karlsson, Linköping: Program Energisystem , 2007, p. 17-24Chapter in book (Other academic)
  • 41.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, Jenny
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Metoder för tvärvetenskaplig analys av energisystem - några exempel: Essäer från doktorandkursen : Systemanalys med metodexempel från energiområdet2011Report (Other academic)
    Abstract [sv]

    Program Energisystem är ett forskningsprogram och en forskarskola som startades 1997 och består av fem olika avdelningar vid fyra universitet i Sverige. De deltagande forskarna tillhör inte bara olika ämnen utan också helt olika fakulteter. Inom ramarna för Program Energisystem arbetar tekniker och samhällsvetare tillsammans för att studera energifrågorna ur olika infallsvinklar. Det är inte bara tekniken i sig, utan även hur den påverkas av bland annat samhällets regelsystem, politiska beslutsprocesser och olika aktörers intressen som studeras. Följande avdelningar deltar i Program Energisystem:

    Energiprocesser, KTHEnergisystem, Linköpings universitetFasta Tillståndets Fysik, Uppsala universitetTema Teknik och social förändring, Linköpings universitetVärmeteknik och maskinlära, Chalmers

    Nya doktorander har antagits vartannat år, med början 1997 vilket lett till att 7 doktorandgrupper har antagits till programmet. Den senaste antagningen genomfördes under hösten 2010. Varje årskull läser ett gemensamt kurspaket om 45 högskolepoäng. Kurspaketet har förändrats något under årens lopp, men huvudlinjerna är kvar. För doktoranderna som antogs 2010 ingår följande kurser i detta kurspaket:

    Vetenskapsteori, 6hpPerspectives on Energy Systems, 7,5hpSystemanalys med metodexempel från energiområdet, 12hpTvärprojekt i energisystem, 15hpPraktisk tvärvetenskap inom energiområdet, 4,5hp

    Kurserna är öppna för andra doktorander i mån av plats och denna bok är ett resultat av de uppsatser som doktoranderna skrev under ”Systemanalys med metodexempel från energiområdet” och utgör en del i examinationen.

  • 42.
    Karlsson, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Palm, JennyLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.
    Omställning för uthållighet - essäer om energisystem i utveckling2007Collection (editor) (Other academic)
    Abstract [sv]

      

  • 43.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, JennyLinköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    På spaning efter systemteori och tvärvetenskaplig metod2009Collection (editor) (Other academic)
  • 44.
    Karlsson, Magnus
    et al.
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Palm, JennyLinköping University, Faculty of Arts and Sciences. Linköping University, The Tema Institute, Technology and Social Change.Ingelstam, Lars
    Att analysera system -reflektion och perspektiv,2007Collection (editor) (Other academic)
    Abstract [sv]

       

  • 45.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Palm, Jenny
    Linköping University, The Tema Institute, Technology and Social Change. Linköping University, Faculty of Arts and Sciences.
    Widén, Joakim
    Teknikvetenskaper, Uppsala universitet, Sweden.
    Interdisciplinary energy system methodology: A compilation of research methods used in the Energy Systems Programme2011Report (Other academic)
    Abstract [en]

    The purpose of this volume is to present the basics of our methods used within the Energy Systems Programme and to introduce how we have combined methods in earlier research. A research-oriented learning experience includes a formal and informal process of gaining and utilizing knowledge in an area of interest. In our short description of the methods,  e end up with a rather formal description of the essence of each method; however, this should be seen as an introduction to methods as a whole, where the reader can deepen their understanding of a method by looking at the reference literature given. We also hope that our book will contribute to vibrant discussions within your research environment concerning the pros and cons of different methods, and the possibilities and limitations when combining different methods. We also encourage the reader to contact people familiar with a method to discuss their experiences and understand that there are lessons to be learned from them.

    In this chapter, we will introduce the methods presented here. However, we will start by introducing the system perspective and explain how to do a system analysis.

  • 46.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Rohdin, Patrik
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Karlsson, Fredrik
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Moshfegh, Bahram
    Linköping University, The Institute of Technology. Linköping University, Department of Mechanical Engineering, Energy Systems.
    Energikonsekvenser av strukturerat energieffektivitetstänkande för Arla Foods2005Report (Other academic)
  • 47.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Sandberg, Peter
    Linköping University, Department of Mechanical Engineering, Energy Systems. Linköping University, The Institute of Technology.
    The MIND method: a decision support system based on MILPManuscript (preprint) (Other academic)
    Abstract [en]

    This paper presents an overview of the MIND method (Method for analysis of INDustrial energy systems), which is based on Mixed Integer Linear Programming (MILP) and developed at Linköping Institute of Technology in Sweden. Initially, the method focused on cost-optimization of industrial energy systems, but through development broader analyses has been enabled including for example the possibility to use a multi-objective approach. Several industries, ranging from the food industry to the pulp and paper industry, have hitherto been modeled and analyzed using the MIND method.

  • 48.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Svensson, Inger-Lise
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Rohdin, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Mardan, Nawzad
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Moshfegh, Bahram
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Systemdesign för energieffektivitet - AstraZeneca och Scania i Södertälje i samarbete med Telge Nät (SEAST) – Slutrapport2011Report (Other academic)
  • 49.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Söderström, Mats
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Sensitivity analysis of investments in the pulp and paper industry: on investments in the chemical recovery cycle at a board mill2002In: International journal of energy research (Print), ISSN 0363-907X, E-ISSN 1099-114X, Vol. 26, no 14, p. 1253-1267Article in journal (Refereed)
    Abstract [en]

    In the pulp and paper industry, energy costs represents a relatively large proportion of the value of production. When investing in new equipment, considerations concerning boundary conditions, such as electricity and oil prices, are therefore of great importance. A vital requirement is the identification of other key parameters influencing production costs as well as possible interaction between these parameters. In this paper, a sensitivity analysis is accomplished by using an optimization model that minimizes the system cost combined with a systematic approach involving a statistical method.

    The paper analyses the possibilities of investing in a new chemical recovery cycle, including a new recovery boiler and evaporation plant, at a Swedish board mill. The study includes a survey of future changes, together with forecasts of boundary conditions, such as changes in the price of electricity and oil. Interactions between different parameters are also examined.

  • 50.
    Karlsson, Magnus
    et al.
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Thollander, Patrik
    Linköping University, Department of Management and Engineering, Energy Systems. Linköping University, The Institute of Technology.
    Opportunities using the energy system optimization tool reMIND2013Conference paper (Refereed)
    Abstract [en]

    The development of a method, called MIND (Method for analyzes of INDustrial energy systems) started in the early 90ies at the division Energy Systems at Linköping University, Sweden. The software reMIND, based on the MIND method, includes a graphical user interface (Figure 1) along with a number of functions in order to analyze industrial energy systems.

    Figure 1: Graphical interface of reMIND

     

    The tool has been used in a number of different projects over the years showing great opportunities to make an impact on the energy systems. In a foundry, for example, using reMIND it was concluded that the holding furnaces would in the future be valuable to reduce electricity costs. The head of company had decided to remove the holding furnaces when investing in new furnaces, but due to the reMIND study, the decision was changed. In another study great savings has been shown when introducing a heat market in a region north of Stockholm, where several industrial- and energy companies could sell and buy heat. In the steel industry process optimization has been conducted to reduce costs. Also, in Eco-Industrial parks great synergy effects have been shown by using reMIND. In total there are around 100 publications, in whole or in part, based on modeling using reMIND (e.g. dissertations, scientific articles, reports and theses).

     

    So far, reMIND has mainly been used in the academia (Linköping University, Luleå University of Technology, University of Gävle and Chalmers University of Technology) but also Swerea MEFOS has used the tool. Just recently it has started to be used in China.

     

    The program is developed as a general tool to be able to model a variety of industries and their energy supply and use. However, it is possible to model any kind of system, but so far only energy-related problems have been modeled both in industries and district heating systems and in the integration in between. With the help of optimization routines the system cost is minimized based on the limitations and conditions the modeled company is exposed to. However, any type of minimization may be accomplished when using reMIND, e.g. minimizing CO2-emissions. It is also possible to model problems with multi-objective characters.

     

    The structure of the problem is represented by branches (e.g. electricity) and nodes (e.g. process lines). Each node includes numerous functions describing the functionality of the node. Time is divided into time steps to consider the dynamics of the system.

12 1 - 50 of 84
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf